OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 27 trang 11 SBT Toán 9 Tập 2

Giải bài 27 tr 11 sách BT Toán lớp 9 Tập 2

Giải các hệ phương trình:

\(a)\left\{ {\matrix{
{5\left( {x + 2y} \right) = 3x - 1} \cr 
{2x + 4 = 3\left( {x - 5y} \right) - 12} \cr} } \right.\)

\(b)\left\{ {\matrix{
{4{x^2} - 5\left( {y + 1} \right) = {{\left( {2x - 3} \right)}^2}} \cr 
{3\left( {7x + 2} \right) = 5\left( {2y - 1} \right) - 3x} \cr} } \right.\)

\(c)\left\{ {\matrix{
{{{2x + 1} \over 4} - {{y - 2} \over 3} = {1 \over {12}}} \cr 
{{{x + 5} \over 2} = {{y + 7} \over 3} - 4} \cr} } \right.\)

\(d)\left\{ {\matrix{
{{{3s - 2t} \over 5} + {{5s - 3t} \over 3} = s + 1} \cr 
{{{2s - 3t} \over 3} + {{4s - 3t} \over 2} = t + 1} \cr} } \right.\)

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng:

- Biến đổi hệ phương trình đã cho về hệ hai phương trình bậc nhất hai ẩn.

- Cách giải hệ phương trình bằng phương pháp cộng đại số:

+ Bước 1: Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.

+ Bước 2: Sử dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

+ Bước 3: Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho.

Lời giải chi tiết

a)

\(\eqalign{
& \left\{ {\matrix{
{5\left( {x + 2y} \right) = 3x - 1} \cr 
{2x + 4 = 3\left( {x - 5y} \right) - 12} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{5x + 10y = 3x - 1} \cr 
{2x + 4 = 3x - 15y - 12} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{2x + 10y = - 1} \cr 
{x - 15y = 16} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x + 10y = - 1} \cr 
{2x - 30y = 32} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{40y = - 33} \cr 
{x - 15y = 16} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - {{33} \over {40}}} \cr 
{x - 15.\left( { - {{33} \over {40}}} \right) = 16} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - {{33} \over {40}}} \cr 
{x = 16 - {{99} \over 8}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - {{33} \over {40}}} \cr 
{x = {{29} \over 8}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( {{{29} \over 8}; - {{33} \over {40}}} \right)\)

b)

\(\eqalign{
& \left\{ {\matrix{
{4{x^2} - 5\left( {y + 1} \right) = {{\left( {2x - 3} \right)}^2}} \cr 
{3\left( {7x + 2} \right) = 5\left( {2y - 1} \right) - 3x} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{4{x^2} - 5y - 5 = 4{x^2} - 12x + 9} \cr 
{21x + 6 = 10y - 5 - 3x} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{12x - 5y = 14} \cr 
{24x - 10y = - 11} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{24x - 10y = 28} \cr 
{24x - 10y = - 11} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{0x + 0y = 39} \cr 
{24x - 10y = - 11} \cr} } \right. \cr} \)

Phương trình: 0x + 0y = 39 vô nghiệm.

Vậy hệ phương trình đã cho vô nghiệm.

c)

\(\eqalign{
& \left\{ {\matrix{
{{{2x + 1} \over 4} - {{y - 2} \over 3} = {1 \over {12}}} \cr 
{{{x + 5} \over 2} = {{y + 7} \over 3} - 4} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3\left( {2x + 1} \right) - 4\left( {y - 2} \right) = 1} \cr 
{3\left( {x + 5} \right) = 2\left( {y + 7} \right) - 24} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{6x + 3 - 4y + 8 = 1} \cr 
{3x + 15 = 2y + 14 - 24} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{6x - 4y = - 10} \cr 
{3x - 2y = - 25} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3x - 2y = - 5} \cr 
{3x - 2y = - 25} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{0x + 0y = 20} \cr 
{3x - 2y = 25} \cr} } \right. \cr} \)

Phương trình 0x + 0y = 20 vô nghiệm

Vậy hệ phương trình đã cho vô nghiệm

d)

\(\eqalign{
& \left\{ {\matrix{
{{{3s - 3t} \over 5} + {{5s - 3t} \over 3} = s + 1} \cr 
{{{2s - 3t} \over 3} + {{4s - 3t} \over 2} = t + 1} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3\left( {3s - 2t} \right) + 5\left( {5s - 3t} \right) = 15s + 15} \cr 
{2\left( {2s - 3t} \right) + 3\left( {4s - 3t} \right) = 6t + 6} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{9s - 6t + 25s - 15t = 15s + 15} \cr 
{4s - 6t + 12s - 9t = 6t + 6} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{19s - 21t = 15} \cr 
{16s - 21t = 6} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3s = 9} \cr 
{16s - 21t = 6} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{s = 3} \cr 
{16.3 - 21t = 6} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{s = 3} \cr 
{21t = 48 - 6} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{s = 3} \cr 
{t = 2} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (s; t) = (3; 2).

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 27 trang 11 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Trang Thiện

    Theo dõi (0) 3 Trả lời
  • Linh Đỗ Khánh
    Bài 2 ạ.

    Theo dõi (0) 0 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    tang man dinh
    Giúp mình nhé

    Theo dõi (0) 2 Trả lời
  • Bé Panda
    2x 3y =1-3x 2y=5
    Theo dõi (0) 0 Trả lời
  • ADMICRO
    Nguyễn Sơn Ca

    giải hệ phương trình

    a,\(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)

    b,\(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)

    c, \(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)

    Theo dõi (0) 1 Trả lời
  • Đào Thị Nhàn

    Cho hệ phương trình: \(\left\{{}\begin{matrix}mx-y=1\left(1\right)\\x+my=m+6\left(2\right)\end{matrix}\right.\) (với m là tham số)

    1) Giải hệ phương trình với m=1?

    2) Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn 3x-y=1?

    Theo dõi (0) 1 Trả lời
  • Hoàng My

    Giải hệ phương trình bằng phương pháp cộng đại số

    1)\(\left\{{}\begin{matrix}x+4y=2\\3x+2y=4\end{matrix}\right.\)

    2)\(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=y\end{matrix}\right.\)

    3)\(\left\{{}\begin{matrix}2x-3y=2\\-4x+6y=2\end{matrix}\right.\)

    Theo dõi (0) 1 Trả lời
  • truc lam

    Giải hệ phương trình bằng phương pháp cộng đại số

    1)\(\left\{{}\begin{matrix}x+4y=2\\3x+2y=4\end{matrix}\right.\)

    2)\(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=y\end{matrix}\right.\)

    3)\(\left\{{}\begin{matrix}2x-3y=2\\-4x+6y=2\end{matrix}\right.\)

    Theo dõi (0) 1 Trả lời
  • thanh hằng

    Giải hệ phương trình bằng phương pháp cộng đại số:

    1) \(\left\{{}\begin{matrix}3x+2y=6\\x-y=2\end{matrix}\right.\)

    2)\(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\)

    3)\(\left\{{}\begin{matrix}2x+3y=5\\5x-4y=1\end{matrix}\right.\)

    Theo dõi (0) 1 Trả lời
  • Phạm Khánh Ngọc

    Giải hpt :

    \(\left\{{}\begin{matrix}2x-y=1-2y\\3x+y=3-x\end{matrix}\right.\)

    Theo dõi (0) 1 Trả lời
  • Nguyễn Hoài Thương

    Giải hệ phương trình sau:

    a)\(\left\{{}\begin{matrix}\dfrac{x-12}{4}=\dfrac{y-9}{3}=z-1\\3x+5y-z=2\end{matrix}\right.\)

    b)\(\left\{{}\begin{matrix}\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{a+c}{8}\\a+b+c=14\end{matrix}\right.\)

    Theo dõi (0) 1 Trả lời
  • nguyen bao anh

    Giải hệ phương trình :

    \(\left\{{}\begin{matrix}5x^2+2y^2+2xy=26\\3x+2x^2-xy-y^2=11\end{matrix}\right.\)

    Theo dõi (0) 1 Trả lời
NONE
OFF