Giải bài 4.2 tr 12 sách BT Toán lớp 9 Tập 2
Hãy xác định hàm số bậc nhất thỏa mãn mỗi điều kiện sau:
\(a)\) Đồ thị của hàm số đi qua hai điểm \(M(-3; 1)\) và \(N(1; 2)\)
\(b)\) Đồ thị của hàm số đi qua hai điểm \(M\left( {\sqrt 2 ;1} \right)\) và \(N\left( {3;3\sqrt 2 - 1} \right)\)
\(c)\) Đồ thị đi qua điểm \(M(-2; 9)\) và cắt đường thẳng \((d): 3x – 5y = 1\) tại điểm có hoành độ bằng \(2.\)
Hướng dẫn giải chi tiết
Hướng dẫn giải
Sử dụng:
- Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b,\) trong đó \(a, b\) là những số cho trước và \(a \ne 0.\)
- Đường thẳng \(ax+by=c\) đi qua điểm \(M(x_0;y_0)\) \( \Leftrightarrow ax_0+by_0=c\).
- Giải hệ phương trình bằng phương pháp cộng đại số
Lời giải chi tiết
Hàm số bậc nhất có dạng \(y = ax + b\) \( (a \ne 0).\)
\(a)\) Đồ thị của hàm số \(y = ax + b\) đi qua điểm \(M(-3; 1)\) nên ta có \(1 = -3a + b\)
Đồ thị của hàm số \(y = ax + b\) đi qua điểm \(N(1; 2)\) nên ta có \(2 = a + b\)
Khi đó \(a\) và \(b\) là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{ - 3a + b = 1} \cr
{a + b = 2} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{4a = 1} \cr
{a + b = 2} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = \displaystyle{1 \over 4}} \cr
{\displaystyle{1 \over 4} + b = 2} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{a =\displaystyle {1 \over 4}} \cr
{b =\displaystyle {7 \over 4}} \cr} } \right. \cr} \)
Ta thấy \(a=\displaystyle {1 \over 4}\) thoả mãn điều kiện \( a \ne 0\)
Vậy hàm số cần tìm là \(y = \displaystyle{1 \over 4}x + {7 \over 4}.\)
\(b)\) Đồ thị của hàm số \(y = ax + b\) đi qua điểm \(M\left( {\sqrt 2 ;1} \right)\) nên ta có \(1 = a\sqrt 2 + b\)
Đồ thị của hàm số \(y = ax + b\) đi qua điểm \(N\left( {3;3\sqrt 2 - 1} \right)\) nên ta có \(3\sqrt 2 - 1 = 3a + b\)
Khi đó \(a\) và \(b\) là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{a\sqrt 2 + b = 1} \cr
{3a + b = 3\sqrt 2 - 1} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{\left( {3 - \sqrt 2 } \right)a = 3\sqrt 2 - 2} \cr
{a\sqrt 2 + b = 1} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{\left( {3 - \sqrt 2 } \right)a = \sqrt 2 \left( {3 - \sqrt 2 } \right)} \cr
{a\sqrt 2 + b = 1} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = \sqrt 2 } \cr
{{{\left( {\sqrt 2 } \right)}^2} + b = 1} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = \sqrt 2 } \cr
{2 + b = 1} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{a = \sqrt 2 } \cr
{b = - 1} \cr} } \right. \cr} \)
Ta thấy \(a=\sqrt 2\) thoả mãn điều kiện \( a \ne 0\)
Vậy hàm số cần tìm là \(y = \sqrt 2 x - 1\)
\(c)\) Do đồ thị của hàm số \(y = ax + b\) cắt đường thẳng \((d): 3x – 5y = 1\) tại điểm \(N\) có hoành độ bằng \(2\) nên \(N(2;y)\).
Điểm \(N\) nằm trên đường thẳng \((d): 3x – 5y = 1\) nên ta có \(3.2 - 5y = 1 \Leftrightarrow - 5y = - 5 \Leftrightarrow y = 1\)
Suy ra \(N( 2; 1.)\)
Đồ thị của hàm số \(y = ax + b\) đi qua điểm \(M(-2; 9)\) nên ta có \(9 = -2a + b\)
Đồ thị của hàm số \(y = ax + b\) đi qua điểm \(N(2; 1)\) nên ta có \(1 =2a + b\)
Khi đó \(a\) và \(b\) là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{ - 2a + b = 9} \cr
{2a + b = 1} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2b = 10} \cr
{2a + b = 1} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = 5} \cr
{2a + 5 = 1} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 5} \cr
{2a = - 4} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = 5} \cr
{a = - 2} \cr} } \right. \cr} \)
Ta thấy \(a=- 2\) thoả mãn điều kiện \( a \ne 0\)
Vậy hàm số cần tìm là \(y = - 2x + 5.\)
-- Mod Toán 9 HỌC247
Bài tập SGK khác
-
Giải hệ phương trình xy+y^2+x−5y=0, (x+y)x/y=6
bởi Sasu ka 22/02/2019
Giải HPT: \(\left\{{}\begin{matrix}xy+y^2+x-5y=0\\\left(x+y\right)\dfrac{x}{y}=6\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
giải hệ pt
x + y - căn xy = 7
{
x^2 + y^2 + xy = 133Theo dõi (0) 1 Trả lời -
giải hệ phương trình :
\(\left[\begin{matrix}a\left(yz-xz-xy\right)=xyz\\b\left(xz-xy-yz\right)=xyz\\c\left(xy-xz-yz\right)=xyz\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình (m−1)x−my=3m−1, 2x−y=m+5
bởi An Nhiên 14/02/2019
cho hệ phương trình \(\left\{\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
ADMICRO
Giải hệ phương trình x^3+1=2y, y^3+1=2x
bởi Lê Bảo An 14/02/2019
giả hệ phương trình
\(\begin{cases}x^3+1=2y\left(1\right)\\y^3+1=2x\left(2\right)\end{cases}\)
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình x^2+y^2+xy=9, x+y+xy=3
bởi bich thu 21/01/2019
giải hệ phương trình :
\(\begin{cases}x^2+y^2+xy=9\\x+y+xy=3\end{cases}\)
giải hộ mik với, mik bình phương pt 1 r mak cứ bị vô ng0
Theo dõi (0) 1 Trả lời -
giải hệ phương trình sau
\(\left\{\begin{matrix}\frac{1}{4x}+\frac{5}{12y}=\frac{4}{3xy}\\\frac{3}{4x}-\frac{1}{3y}=\frac{-47}{12y}\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
hpt
\(\left\{\begin{matrix}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình xy/x+y=2/3, yz/y+z=3/2, xz/x+z=6/7
bởi hi hi 14/02/2019
giải hệ pt
\(\left\{\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{3}{2}\\\frac{x\text{z}}{x+z}=\frac{6}{7}\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình :
\(\begin{cases}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{cases}\)
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình xy+x+y=3, 1/x^2+2x+1/y^2+2y=2/3
bởi Mai Thuy 14/02/2019
giải hệ phương trình :
\(\left\{\begin{matrix}xy+x+y=3\\\frac{1}{x^2+2x}+\frac{1}{y^2+2y}=\frac{2}{3}\end{matrix}\right.\)
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình xy=z, yz=4x, zx=9y
bởi Nguyễn Trà Long 14/02/2019
Các bạn giúp mình giải hệ này với:
\(\begin{cases}xy=z\\yz=4x\\zx=9y\end{cases}\)
Theo dõi (0) 1 Trả lời