OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 79 trang 148 SBT Toán 7 Tập 1

Giải bài 79 tr 148 sách BT Toán lớp 7 Tập 1

Cho đường tròn tâm \(O\) đường kính \(AB.\) Gọi \(M\) là một điểm nằm trên đường tròn, tính số đo góc \(AMB\).

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng: 

- Tam giác cân là tam giác có hai cạnh bằng nhau.

- Tính chất: Tam giác cân có hai góc ở đáy bằng nhau.

Lời giải chi tiết

Nối \(OM\), ta có:

\(OA = OM\) (bằng bán kính đường tròn tâm \(O\)) 

\( \Rightarrow ∆OAM\) cân tại \(O\).

\( \Rightarrow \widehat A = \widehat {{M_1}}\) (tính chất tam giác cân)  (1)

\(OM = OB\) (bằng bán kính đường tròn tâm \(O\))

\( \Rightarrow  ∆OBM\) cân tại \(O\).

\( \Rightarrow \widehat {{M_2}} = \widehat B\) (tính chất tam giác cân)  (2)

Áp dụng định lí tổng các góc của một tam giác vào \(∆AMB\), ta có:

\(\widehat A + \widehat {AMB} + \widehat B = 180^\circ \)

\( \Rightarrow \widehat A + \widehat {{M_1}} + \widehat {{M_2}} + \widehat B = 180^\circ \)       (3)

Từ (1), (2) và (3) suy ra:

\(  \widehat M_1 + \widehat {{M_1}} + \widehat {{M_2}} + \widehat M_2 = 180^\circ \)

\(\Rightarrow 2.\left( {\widehat {{M_1}} + \widehat {{M_2}}} \right) = 180^\circ \)

\( \Rightarrow \widehat {{M_1}} + \widehat {{M_2}} =180^o:2= 90^\circ \) hay \(\widehat {AMB} = 90^\circ \)

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 79 trang 148 SBT Toán 7 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF