OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 10 trang 91 SGK Hình học 12

Giải bài 10 tr 91 sách GK Toán Hình lớp 12

Giải bài toán sau đây bằng phương pháp tọa độ: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1. Tính khoảng cách từ đỉnh A đến các mặt phẳng (A'BD) và B'D'C). 

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết bài 10

Phương pháp:

Từ dữ kiện đề bài, ta chọn một đỉnh bất kì của hình lập phương là gốc tọa độ. Khi đó, 3 cạnh của hình lập phương đi qua đỉnh đó chính là phương của các trục Ox, Oy, Oz.

Sau khi xây dựng xong hệ trục tọa độ, ta xác định tọa độ các đỉnh lúc này và tiến hành giải bài toán bằng phương pháp tọa độ trong không gian.

Lời giải:

Ta có lời giải chi tiết bài 10 như sau:

Ta chọn hệ toạ độ Oxyz sao cho \(O\equiv A, \vec{i}=\overrightarrow{AB},\vec{j}=\overrightarrow{AD}, \vec{k}=\overrightarrow{AA'}\)

Trong hệ toạ độ Oxyz ta có: A'(0;0;1), B(1;0;0), D(0;1;0), B'(1;0;1), D'(0;1;1), C(1;1;0).

Đặt \((\alpha )=(A'BD)\) và \((\beta )=(B'D'C')\).

Mặt phẳng \(\left ( \alpha \right )\) đi qua B(1;0;0), D(0;1;0), A'(0;0;1). Nên ta có phương trình theo đoạn chắn của \(\left ( \alpha \right )\) là:

\((\alpha ):\frac{x}{1}+\frac{y}{1}+\frac{z}{1}=1\) suy ra \(x+y+z-1=0.\)

Ta có: 

\(\begin{array}{l} \overrightarrow {B'D'} = \left( { - 1;1;0} \right)\\ \overrightarrow {B'C} = (0;1; - 1)\\ \Rightarrow \left[ {\overrightarrow {B'D'} ;\overrightarrow {B'C} } \right] = \left( {\left| {\begin{array}{*{20}{c}} 1&0\\ 1&{ - 1} \end{array}} \right|;\left| {\begin{array}{*{20}{c}} 0&{ - 1}\\ { - 1}&0 \end{array}} \right|;\left| {\begin{array}{*{20}{c}} { - 1}&1\\ 0&1 \end{array}} \right|} \right) = \left( { - 1; - 1; - 1} \right) \end{array}\)

Mặt phẳng \(\left ( \beta \right )\) đi qua B'(1;0;1) và nhận vectơ \(\overrightarrow n = \left[ {\overrightarrow {B'D'} ;\overrightarrow {B'C} } \right]\) làm một vectơ pháp tuyến, nên có phương trình là:

\((\beta ):(x-1)+(y-1)+z=0\Leftrightarrow x+y+z-2=0\).

Vậy ta có:

\(d(A,(\alpha ))=\frac{\left | -1 \right |}{\sqrt{1^2+1^2+1^2}}=\frac{1}{\sqrt{3}}\).

\(d(A,(\beta ))=\frac{\left | -2 \right |}{\sqrt{1^2+1^2+1^2}}=\frac{2}{\sqrt{3}}\).

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 10 trang 91 SGK Hình học 12 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF