OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 8 trang 12 SGK Toán 9 Tập 2

Giải bài 8 tr 12 sách GK Toán 9 Tập 2

Cho các hệ phương trình sau:

a) \(\left\{\begin{matrix} x=2\\ 2x-y=3 \end{matrix}\right.\)

b) \(\left\{\begin{matrix} x+3y=2\\ 2y=4 \end{matrix}\right.\)

Trước hết, hãy đoán nhận số nghiệm của mỗi hệ phương trình trên (giải thích rõ lí do). Sau đó, tìm tập nghiệm của các hệ đã cho bằng cách vẽ hình.

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết bài 8

a) Ta có

\(\left\{ \matrix{
x = 2 \hfill \cr 
2x - y = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 2\ (d) \hfill \cr 
y = 2x - 3\ (d') \hfill \cr} \right.\)

Dự đoán: Hệ có nghiệm duy nhất vì một đồ thị là đường thẳng \((d):x = 2\) song song với trục tung, còn một đồ thị là đường thẳng \((d'):y = 2x - 3\) cắt hai trục tọa độ.

+) Vẽ \((d)\): \(x = 2\) là đường thẳng đi qua điểm có tọa độ \((2;0)\) và song song với trục \(Oy\).

+) Vẽ \((d' )\): \(y =2x- 3\)

Cho \(x = 0 \Rightarrow y = -3\) ta được \(A(0; -3)\).

Cho \(y = 0 \Rightarrow x = \dfrac{3}{2}\) ta được \(B{\left(\dfrac{3 }{2};0 \right)}\).

Đường thẳng (d') là đường thẳng đi qua hai điểm \(A,\ B\).

Ta thấy hai đường thẳng cắt nhau tại \(N(2; 1)\).

Thay \(x = 2, y = 1\) vào hệ phương trình 

\(\left\{ \begin{array}{l}x = 2\\2x - y = 3\end{array} \right.\) ta được 

\(\left\{ \begin{array}{l}2 = 2\\2.2 - 1 = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 = 2\\3 = 3\end{array} \right.\)  (luôn đúng) 

Vậy hệ phương trình có nghiệm \((2; 1)\).

\(b)\left\{ \matrix{
x + 3y = 2 \hfill \cr
2y = 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = - \dfrac{1}{3}x + \dfrac{2}{3}\, (d)\hfill \cr
y = 2 \, (d') \hfill \cr}  \right.\)

Hệ có nghiệm duy nhất vì một đồ thị là đường thẳng \((d):y =  - \dfrac{1 }{3}x + \dfrac{2}{3}\) cắt hai trục tọa độ, còn một đồ thị là đường thẳng \((d'):y = 2\) song song với trục hoành.

+) Vẽ \(y=-\dfrac{1}{3}x+\dfrac{2}{3}\)

Cho \(x = 0 \Rightarrow y = \dfrac{2}{3}\) ta được \(A{\left(0;\dfrac{2}{3}\right)}\) .

Cho \(y = 0 \Rightarrow x = 2\) ta được \(B(2; 0)\).

Đồ thị hàm số \(y=-\dfrac{1}{3}x+\dfrac{2}{3}\) là đường thẳng đi qua hai điểm \(A,\ B\).

 

+) Vẽ  \(y = 2\) là đường thẳng đi qua điểm có tọa độ \((0;2)\) trên trục tung và song song với trục hoành (\(Ox\))

Ta thấy hai đường thẳng cắt nhau tại \(M(-4; 2)\). 

Thay \(x = -4, y = 2\) vào hệ phương trình 

\(\left\{ \begin{array}{l}x+3y = 2\\2y = 4\end{array} \right.\) ta được

\(\left\{ \begin{array}{l} - 4 + 3.2 = 2\\2.2 = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2 = 2\\4 = 4\end{array} \right.\)  (luôn đúng)

Vậy hệ phương trình có nghiệm \((-4; 2)\).

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 8 trang 12 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF