OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 10 trang 12 SGK Toán 9 Tập 2

Giải bài 10 tr 12 sách GK Toán 9 Tập 2

Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

a) \(\left\{\begin{matrix} 4x - 4y = 2 & & \\ -2x + 2y = -1 & & \end{matrix}\right.\)

b) \(\left\{\begin{matrix} \frac{1}{3}x - y = \frac{2}{3} & & \\ x -3y = 2 & & \end{matrix}\right.\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết bài 10

Câu a:

Ta có:

\(\left\{\begin{matrix} 4x - 4y = 2 & & \\ -2x + 2y = -1 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 4y = 4x - 2 & & \\ 2y = 2x - 1 & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} y = x - \dfrac{1}{2}\, (d)& & \\ y = x - \dfrac{1}{2} \, (d')& & \end{matrix}\right.\)

Suy ra \(a = a' = 1;\ b = b' = - \dfrac{1}{2}\).

Do đó hai đường thẳng \((d)\) và \((d')\)  trùng nhau nên hệ phương trình có vô số nghiệm.

Câu b:

Ta có:

\(\left\{\begin{matrix} \dfrac{1}{3}x - y = \dfrac{2}{3} & & \\ x -3y = 2 & & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y = \dfrac{1}{3}x - \dfrac{2}{3} & & \\ 3y = x - 2 & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{1}{3}x - \dfrac{2}{3} \, (d)& & \\ y = \dfrac{1}{3}x - \dfrac{2}{3} \, (d')& & \end{matrix}\right.\)

Suy ra \(a = a' = \dfrac{1}{3}\), \(b = b' = -\dfrac{2}{3}\)

Do đó hai đường thẳng \((d)\) và \((d')\)  trùng nhau nên hệ phương trình có vô số nghiệm.

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 10 trang 12 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF