OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 4 trang 11 SGK Toán 9 Tập 2

Giải bài 4 tr 11 sách GK Toán 9 Tập 2

Không cần vẽ hình, hãy cho biết số nghiệm của mỗi hệ phương trình sau đây và giải thích vì sao:

a) \(\left\{\begin{matrix} y = 3 - 2x & & \\ y = 3x - 1 & & \end{matrix}\right.\)                       b) \(\left\{\begin{matrix} y = -\frac{1}{2}x+ 3 & & \\ y = -\frac{1}{2}x + 1 & & \end{matrix}\right.\)

c) \(\left\{\begin{matrix} 2y = -3x & & \\ 3y = 2x & & \end{matrix}\right.\)                         d) \(\left\{\begin{matrix} 3x - y = 3 & & \\ x - \frac{1}{3}y = 1 & & \end{matrix}\right.\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết bài 4

a) Ta có:

\(\left\{\begin{matrix} y = 3 - 2x & & \\ y = 3x - 1 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = -2x + 3 \, (d) & & \\ y = 3x - 1 \, (d') & & \end{matrix}\right.\)

Ta có \(a = -2, a' = 3\) nên \(a ≠ a'\).

Do đó hai đường thẳng \( (d)\) và \((d')\) cắt nhau nên hệ phương trình đã cho  có một nghiệm duy nhất.

b) Ta có:

\(\left\{\begin{matrix} y = -\dfrac{1}{2}x+ 3 \, (d) & & \\ y = -\dfrac{1}{2}x + 1 \, (d') & & \end{matrix}\right.\)

Ta có \(a = -\dfrac{1}{2},b = 3 \) và \(a' = -\dfrac{1}{2}, b' = 1\) nên \(a = a', b ≠ b'\).

 Do đó hai đường thẳng \( (d)\) và \((d')\) song song nên hệ phương trình đã cho  vô nghiệm.

c) Ta có:

\(\left\{\begin{matrix} 2y = -3x & & \\ 3y = 2x & & \end{matrix}\right.\)⇔ \(\left\{\begin{matrix} y = -\dfrac{3}{2}x \, (d) & & \\ y = \dfrac{2}{3}x\, (d') & & \end{matrix}\right.\)

Ta có \(a = -\dfrac{3}{2}, a' = \dfrac{2}{3}\) nên \(a ≠ a'\)

Do đó hai đường thẳng \( (d)\) và \((d')\) cắt nhau nên hệ phương trình đã cho  có một nghiệm duy nhất.

d) Ta có:

\(\left\{\begin{matrix} 3x - y = 3 & & \\ x - \dfrac{1}{3}y = 1 & & \end{matrix}\right.\) ⇔\(\left\{\begin{matrix} y = 3x - 3 & & \\ \dfrac{1}{3}y = x - 1 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = 3x - 3\, (d) & & \\ y = 3x - 3 \, (d')& & \end{matrix}\right.\)

Ta có \(a = 3,\ b = -3 \)  và  \(a' = 3,\  b' = -3\) nên \(a = a',\  b = b'\).

 Do đó hai đường thẳng \( (d)\) và \((d')\) trùng nhau nên hệ phương trình đã cho  có vô số nghiệm.

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 4 trang 11 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF