OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 39 trang 14 SBT Toán 7 Tập 1

Giải bài 39 tr 14 sách BT Toán lớp 7 Tập 1

Tính: \(\displaystyle {\left( { - {1 \over 2}} \right)^0};{\left( {3{1 \over 2}} \right)^2};{\left( {2,5} \right)^3};{\left( { - 1{1 \over 4}} \right)^4}\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

Lũy thừa bậc \(n\) (\( n\) là số tự nhiên lớn hơn \(1\)) của một số hữu tỉ \(x\) là tích của \(n\) thừa số bằng \(x\).

\({x^n} = \underbrace {x \ldots x}_{n\;thừa \;số}\)        (\( x ∈\mathbb Q, n ∈\mathbb N, n> 1\))

Nếu \(x = \dfrac{a}{b}\) thì \({x^n} = {\left( {\dfrac{a}{b}} \right)^n} = \dfrac{{{a^n}}}{{{b^n}}}\)

Quy ước:

\(\eqalign{
& {a^o} = 1\,\,\left( {a \in {\mathbb N^*}} \right) \cr 
& {x^o} = 1\,\,\left( {x \in\mathbb Q,\,\,x \ne 0} \right) \cr} \)

Lời giải chi tiết

\(\displaystyle {\left( { - {1 \over 2}} \right)^0} = 1;\)

\(\displaystyle {\left( {3{1 \over 2}} \right)^2} = {\left( {{7 \over 2}} \right)^2} = {{49} \over 4} = 12{1 \over 4}\) ;

\(\displaystyle {\left( {2,5} \right)^3} = 15,625;\)

\(\displaystyle {\left( { - 1{1 \over 4}} \right)^4} = \left( {{{ - 5} \over 4}} \right)^4 = {{625} \over {256}} = 2{{113} \over {256}}\).

 

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 39 trang 14 SBT Toán 7 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF