OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 3.10 trang 103 SBT Hình học 12

Giải bài 3.10 tr 103 SBT Hình học 12

Cho hình tứ diện ABCD.

a) Chứng minh hệ thức: \(\overrightarrow {AB} .\overrightarrow {CD}  + \overrightarrow {AC} .\overrightarrow {DB}  + \overrightarrow {AD} .\overrightarrow {BC}  = 0\)

b) Từ hệ thức trên hãy suy ra định lí: "Nếu một hình tứ diện có hai cặp cạnh đối diện vuông góc với nhau thì cặp cạnh đối diện thứ ba cũng vuông góc với nhau".

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

a) Ta có 

\(\overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} (\overrightarrow {AD}  - \overrightarrow {AC} ) = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AC} \)          (1)

\(\overrightarrow {AC} .\overrightarrow {DB}  = \overrightarrow {AC} (\overrightarrow {AB}  - \overrightarrow {AD} ) = \overrightarrow {AC} .\overrightarrow {AB}  - \overrightarrow {AC} .\overrightarrow {AD} \)          (2)

\(\overrightarrow {AD} .\overrightarrow {BC}  = \overrightarrow {AD} (\overrightarrow {AC}  - \overrightarrow {AB} ) = \overrightarrow {AD} .\overrightarrow {AC}  - \overrightarrow {AD} .\overrightarrow {AB} \)   (3)

Lấy  (1) + (2) + (3) ta có hệ thức cần chứng minh là:

\(\overrightarrow {AB} .\overrightarrow {CD}  + \overrightarrow {AC} .\overrightarrow {DB}  + \overrightarrow {AD} .\overrightarrow {BC}  = 0\)

b) Từ hệ thức trên ta suy ra định lí:  "Nếu tứ diện ABCD có \(AB \bot CD,AC \bot DB\), nghĩa là \(\overrightarrow {AB} .\overrightarrow {CD}  = 0\) và \(\overrightarrow {AC} .\overrightarrow {DB}  = 0\) thì \(\overrightarrow {AD} .\overrightarrow {BC}  = 0\) và do đó \(AD \bot BC\) ".

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3.10 trang 103 SBT Hình học 12 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF