OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 30 trang 116 SGK Toán 9 Tập 1

Giải bài 30 tr 116 sách GK Toán 9 Tập 1

Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự ở C và D.

Chứng minh rằng:

a) \(\widehat {COD} = {90^0}\)

b) \(CD=AC+BD\)

c) Tích \(AC.BD\) không đổi khi điểm M di chuyển trên nửa đường tròn

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết bài 30

Bài 30 này yêu cầu chứng minh một vài hệ thức quan trọng giúp các bạn có thể vận dụng nhanh các dạng toán quen thuộc với các kì thi.

Ta có:

\(OA\perp AC\)

\(OB\perp BD\)

Suy ra Ax, By là các tiếp tuyến của đường tròn.

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

\(\left\{\begin{matrix} CM=CA\\ DM=BD \end{matrix}\right.\)

\(\left\{\begin{matrix} \widehat{AOC}=\widehat{COM}\\ \widehat{MOD}=\widehat{DOB} \end{matrix}\right.\)

Câu a:

Ta có:

\(\widehat{AOC}+\widehat{COM}+\widehat{MOD}+\widehat{DOB}=180^o\)

\(\Leftrightarrow 2\widehat{COM}+2\widehat{MOD}=180^o\)

\(\Leftrightarrow \widehat{COM}+\widehat{MOD}=90^o\)

\(\Leftrightarrow \widehat{COD}=90^o\)

Câu b: 

Ta có: 

\(CD=CM+MD=AC+BD\)

Câu c:

Xét tam giác COD vuông tại O ta có:

\(MO^2=MC.MD=AC.BD=R^2\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 30 trang 116 SGK Toán 9 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Nguyễn Thị Thùy Dương

    Cho đường tròn tâm O bán kính R, A là một điểm ở ngoài đường tròn sao cho AO=2R đoạn thẳng AO cắt đường tròn tại I. Từ A kẻ tiếp tuyến AM với đường tròn trong đó M là tiếp điểm.

    a) Chứng minh tam giác MIO đều.

    b) Kẻ đường kính MN của đường tròn,

    i) Chứng minh các tam giác AMO và tam giác NIB bằng nhau

    ii) Tính chu vi tam giác AMN theo R

    Theo dõi (0) 0 Trả lời
  • Lam Tue
    Cho (O;R) và điểm A không thuộc đường tròn.Vẽ tiếp tuyến AB vố đường tròn(B là tiếp điểm).Gọi C là điểm đối xứng với B tại OA.CMR:AC là tiếp tuyến của đường tròn(O;R)
    Theo dõi (0) 0 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Ngọc Hương
    Từ điểm A nằm ngoài đường tròn (O), kẻ hai tiếp tuyến AM và AN (M, N là tiếp điểm). Qua O kẻ đường thẳng vuông góc với OM cắt AN tại S. a) Chứng minh SO = SA. b) Qua A kẻ đường thẳng vuông góc với AM cắt ON ở I. Chứng minh IO = IA
    Theo dõi (0) 0 Trả lời
NONE
OFF