Giải bài 6 tr 39 sách GK Toán Hình lớp 12
Cắt một hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều canh 2a. Tính diện tích xung quanh và thể tích của hình nón đó.
Hướng dẫn giải chi tiết bài 6
Theo đề bài, đường kính của hình tròn đáy của nón bằng 2a. Vậy bán kính R = a.
Chiều cao của hình nón bằng chiều cao của tam giác đều, nên h = a√3 và
đường sinh l = 2a.
Vậy diện tích xung quanh của hình nón là:
Sxq = πRl = 2a2π ( đơn vị diện tích).
Thể tích khối nón là:
\(\small =\frac{1}{3}\pi . r^2.h=\frac{1}{3}a^2.a\sqrt{3}=\frac{\sqrt{3}}{3}a^3.\pi\)
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 4 trang 39 SGK Hình học 12
Bài tập 5 trang 39 SGK Hình học 12
Bài tập 7 trang 39 SGK Hình học 12
Bài tập 8 trang 40 SGK Hình học 12
Bài tập 9 trang 40 SGK Hình học 12
Bài tập 10 trang 40 SGK Hình học 12
Bài tập 2.1 trang 46 SBT Hình học 12
Bài tập 2.2 trang 47 SBT Hình học 12
Bài tập 2.3 trang 47 SBT Hình học 12
Bài tập 2.4 trang 47 SBT Hình học 12
Bài tập 2.5 trang 47 SBT Hình học 12
Bài tập 2.6 trang 47 SBT Hình học 12
Bài tập 2.7 trang 47 SBT Hình học 12
Bài tập 2.8 tr 47 SBT Hình học 12
Bài tập 2.9 trang 47 SBT Hình học 12
Bài tập 2.10 trang 48 SBT Hình học 12
Bài tập 2.11 trang 48 SBT Hình học 12
Bài tập 2.12 trang 49 SBT Hình học 12
Bài tập 11 trang 53 SGK Hình học 12 NC
Bài tập 12 trang 53 SGK Hình học 12 NC
Bài tập 13 trang 53 SGK Hình học 12 NC
Bài tập 14 trang 53 SGK Hình học 12 NC
Bài tập 15 trang 53 SGK Hình học 12 NC
Bài tập 16 trang 54 SGK Hình học 12 NC
Bài tập 17 trang 59 SGK Hình học 12 NC
Bài tập 18 trang 59 SGK Hình học 12 NC
Bài tập 19 trang 60 SGK Hình học 12 NC
-
Cho hình trụ có bán kính \(r\) và có chiều cao cũng bằng \(r\). Một hình vuông \(ABCD\) có hai cạnh \(AB\) và \(CD\) lần lượt là các dây cung của hai đường tròn đáy, còn cạnh \(BC\) và \(AD\) không phải là đường sinh của hình trụ. Tính diện tích của hình vuông đó và cosin của góc giữa mặt phẳng chứa hình vuông và mặt phẳng đáy.
bởi Nhật Mai 05/06/2021
Cho hình trụ có bán kính \(r\) và có chiều cao cũng bằng \(r\). Một hình vuông \(ABCD\) có hai cạnh \(AB\) và \(CD\) lần lượt là các dây cung của hai đường tròn đáy, còn cạnh \(BC\) và \(AD\) không phải là đường sinh của hình trụ. Tính diện tích của hình vuông đó và cosin của góc giữa mặt phẳng chứa hình vuông và mặt phẳng đáy.
Theo dõi (0) 1 Trả lời -
Cắt hình nón đỉnh \(S\) bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng \(a\sqrt2\). Tính diện tích xuang quanh, diện tích đáy và thể tích của khối nón tương ứng.
bởi Nguyễn Quang Thanh Tú 06/06/2021
Cắt hình nón đỉnh \(S\) bởi mặt phẳng đi qua trục ta được một tam giác vuông cân có cạnh huyền bằng \(a\sqrt2\). Tính diện tích xuang quanh, diện tích đáy và thể tích của khối nón tương ứng.
Theo dõi (0) 1 Trả lời -
Một hình trụ có hai đáy là hai hình tròn \((O;r)\) và \((O';r)\). Khoảng cách giữa hai đáy là \(OO' = r.\sqrt3\). Một hình nón có đỉnh là \(O'\) và có đáy là hình tròn \((O;r)\). Gọi \(S_1\) là diện tích xung quanh của hình trụ và \(S_2\) là diện tích xung quanh của hình nón, hãy tính tỷ số \({{{S_1}} \over {{S_2}}}\).
bởi Nguyễn Phương Khanh 06/06/2021
Một hình trụ có hai đáy là hai hình tròn \((O;r)\) và \((O';r)\). Khoảng cách giữa hai đáy là \(OO' = r.\sqrt3\). Một hình nón có đỉnh là \(O'\) và có đáy là hình tròn \((O;r)\). Gọi \(S_1\) là diện tích xung quanh của hình trụ và \(S_2\) là diện tích xung quanh của hình nón, hãy tính tỷ số \({{{S_1}} \over {{S_2}}}\).
Theo dõi (0) 1 Trả lời