OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 2.7 trang 47 SBT Hình học 12

Giải bài 2.7 tr 47 SBT Hình học 12

Cho mặt phẳng (P). Gọi A là một điểm nằm trên (P) và B là một điểm nằm ngoài (P) sao cho hình chiếu H của B trên (P) không trùng với A. Một điểm M chạy trên mặt phẳng (P) sao cho góc \(\widehat {ABM} = \widehat {BMH}\). Chứng minh rằng điểm M luôn luôn nằm trên một mặt trụ tròn xoay có trục là AB.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Giả sử ta có điểm M thuộc mặt phẳng (P) thỏa mãn các điều kiện của giả thiết đã cho.

Gọi I là hình chiếu vuông góc của M trên AB. Hai tam giác vuông BIM và MHB bằng nhau vì có cạnh huyền chung và một cặp góc nhọn bằng nhau.

Do đó  MI = BH không đổi. 

Vậy điểm M luôn luôn nằm trên mặt trụ trục AB và có bán kính bằng BH.

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 2.7 trang 47 SBT Hình học 12 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Ngan Le
    Hình nón nội tiếp hình chóp tam giác đều cạnh a có bán kính đáy

    Theo dõi (0) 7 Trả lời
  • Mẫn Nghi
    Cho tam giác ABC vuông cân tại A AB = 2 cm AC = 3 cm quay hình tam giác ABC quanh trục AB được hình nón có diện tích xung quanh là bao nhiêu
    Theo dõi (1) 9 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Phạm Văn Trường
    Tính thể tích

    Theo dõi (0) 6 Trả lời
NONE
OFF