Giải bài 1.39 tr 38 SBT Hình học 11
Gọi A′, B′, C′ tương ứng là ảnh của ba điểm A, B, C qua phép đồng dạng tỉ số k. Chứng minh rằng \(\overrightarrow {A'B'} .\overrightarrow {A'C'} = {k^2}\overrightarrow {AB.} \overrightarrow {AC} \).
Hướng dẫn giải chi tiết
Theo định nghĩa của phép đồng dạng ta có \(B'C' = kBC\), từ đó suy ra \(B'{C^{\prime 2}} = {k^2}B{C^2}\).
\( \Rightarrow {\left( {\overrightarrow {A'C'} - \overrightarrow {A'B'} } \right)^2} = {k^2}{\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)^2}\)
\( \Rightarrow A'{C^{\prime 2}} - 2\overrightarrow {A'C'} .\overrightarrow {A'B'} + A'{B^{\prime 2}} = {k^2}\left( {A{C^2} - 2\overrightarrow {AC} .\overrightarrow {AB} + A{B^2}} \right)\)
Mà \(A'{C^{\prime 2}} = {k^2}A{C^2},A'{B^{\prime 2}} = {k^2}A{B^2}\) nên \(\overrightarrow {A'C'} .\overrightarrow {A'B'} = {k^2}\overrightarrow {AC} .\overrightarrow {AB} \) (đpcm).
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Bài tập 1.37 trang 37 SBT Hình học 11
Bài tập 1.38 trang 38 SBT Hình học 11
Bài tập 1.40 trang 38 SBT Hình học 11
Bài tập 1.41 trang 38 SBT Hình học 11
Bài tập 1.42 trang 38 SBT Hình học 11
Bài tập 1.43 trang 38 SBT Hình học 11
Bài tập 1.44 trang 38 SBT Hình học 11
Bài tập 1.45 trang 38 SBT Hình học 11
Bài tập 1.46 trang 38 SBT Hình học 11
Bài tập 1.47 trang 38 SBT Hình học 11
Bài tập 1.48 trang 38 SBT Hình học 11
Bài tập 1.49 trang 39 SBT Hình học 11
Bài tập 1.50 trang 39 SBT Hình học 11
Bài tập 1.51 trang 39 SBT Hình học 11
Bài tập 1.52 trang 39 SBT Hình học 11
Bài tập 1.53 trang 39 SBT Hình học 11
Bài tập 1.54 trang 39 SBT Hình học 11
Bài tập 1.55 trang 39 SBT Hình học 11
Bài tập 1.56 trang 39 SBT Hình học 11
Bài tập 1.57 trang 39 SBT Hình học 11
Bài tập 1.58 trang 39 SBT Hình học 11
Bài tập 1.59 trang 40 SBT Hình học 11
Bài tập 1.60 trang 40 SBT Hình học 11
Bài tập 1.61 trang 40 SBT Hình học 11
Bài tập 1.62 trang 40 SBT Hình học 11
Bài tập 1.63 trang 40 SBT Hình học 11
Bài tập 1.64 trang 40 SBT Hình học 11
Bài tập 1.65 trang 40 SBT Hình học 11
Bài tập 1.66 trang 40 SBT Hình học 11
Bài tập 1.67 trang 41 SBT Hình học 11
Bài tập 1.68 trang 41 SBT Hình học 11
Bài tập 1.69 trang 41 SBT Hình học 11
Bài tập 1.70 trang 41 SBT Hình học 11
Bài tập 1.71 trang 41 SBT Hình học 11
Bài tập 1.72 trang 41 SBT Hình học 11
Bài tập 1.73 trang 41 SBT Hình học 11
Bài tập 1.74 trang 41 SBT Hình học 11
Bài tập 1.75 trang 42 SBT Hình học 11
Bài tập 1.76 trang 42 SBT Hình học 11
Bài tập 1.77 trang 42 SBT Hình học 11
Bài tập 1.78 trang 42 SBT Hình học 11
Bài tập 1 trang 34 SGK Hình học 11 NC
Bài tập 2 trang 34 SGK Hình học 11 NC
Bài tập 3 trang 34 SGK Hình học 11 NC
Bài tập 4 trang 34 SGK Hình học 11 NC
Bài tập 5 trang 34 SGK Hình học 11 NC
Bài tập 6 trang 34 SGK Hình học 11 NC
Bài tập 7 trang 34 SGK Hình học 11 NC
Bài tập 8 trang 35 SGK Hình học 11 NC
Bài tập 9 trang 35 SGK Hình học 11 NC
Bài tập 1 trang 35 SGK Hình học 11 NC
Bài tập 2 trang 35 SGK Hình học 11 NC
Bài tập 3 trang 35 SGK Hình học 11 NC
Bài tập 4 trang 35 SGK Hình học 11 NC
Bài tập 5 trang 35 SGK Hình học 11 NC
Bài tập 6 trang 35 SGK Hình học 11 NC
Bài tập 7 trang 36 SGK Hình học 11 NC
Bài tập 8 trang 36 SGK Hình học 11 NC
Bài tập 9 trang 36 SGK Hình học 11 NC
Bài tập 10 trang 36 SGK Hình học 11 NC
-
Cho lục giác đều \(ABCDEF\) như hình vẽ bên dưới. Phép quay tâm O góc \({120^0}\)biến tam giác AOE thành tam giác nào?
bởi Spider man 25/02/2021
A. Tam giác EOC
B. Tam giác AOB.
C. Tam giác DOC.
D. Tam giác DOE.
Theo dõi (0) 1 Trả lời -
A. Phép tịnh tiến biến một đường tròn thành một đường tròn có cùng bán kính.
B. Phép tịnh tiến luôn biến một đường thẳng thành một đường thẳng song song với nó.
C. Phép quay bảo toàn khoảng cách giữa hai điểm bất kì.
D. Phép tịnh tiến biến ba điểm thẳng hàng thành ba điểm thẳng hàng.
Theo dõi (0) 1 Trả lời -
Trong mặt phẳng \(Oxy\) cho đường tròn \(\left( C \right)\) ngoại tiếp tam giác ABC, với \(A\left( {3;4} \right),B\left( { - 3; - 2} \right),C\left( {9; - 2} \right)\). Tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {3;5} \right)\) và phép vị tự \({V_{\left( {O; - \frac{1}{3}} \right)}}.\)
bởi Nguyen Phuc 25/02/2021
A. \(\left( {C'} \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 2.\)
B. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 4.\)
C. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 6.\)
D. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 36.\)
Theo dõi (0) 1 Trả lời