Bài tập 9 trang 35 SGK Hình học 11 NC
Cho đường tròn (O ; R) và điểm A cố định Một dãy cung BC thay đổi của (O ; R) có độ dài không đổi BC = m. Tìm quỹ tích các điểm G sao cho \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
Hướng dẫn giải chi tiết
Gọi I là trung điểm của BC
\(\begin{array}{l}
\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {GA} + 2\overrightarrow {GI} = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {AG} = \frac{2}{3}\overrightarrow {AI}
\end{array}\)
Tức là phép vị tự V tâm A tỉ số 2/3 biến điểm I thành điểm G
Trong tam giác vuông OIB ta có:
\(OI = \sqrt {O{B^2} - I{B^2}} = \sqrt {{R^2} - {{\left( {\frac{m}{2}} \right)}^2}} = R'\) (không đổi)
Nên quỹ tích I là đường tròn (O ; R’) hoặc là điểm O (nếu m = 2R)
Do đó quỹ tích G là ảnh của quỹ tích I qua phép vị tự V.
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Bài tập 7 trang 34 SGK Hình học 11 NC
Bài tập 8 trang 35 SGK Hình học 11 NC
Bài tập 1 trang 35 SGK Hình học 11 NC
Bài tập 2 trang 35 SGK Hình học 11 NC
Bài tập 3 trang 35 SGK Hình học 11 NC
Bài tập 4 trang 35 SGK Hình học 11 NC
Bài tập 5 trang 35 SGK Hình học 11 NC
Bài tập 6 trang 35 SGK Hình học 11 NC
Bài tập 7 trang 36 SGK Hình học 11 NC
Bài tập 8 trang 36 SGK Hình học 11 NC
Bài tập 9 trang 36 SGK Hình học 11 NC
Bài tập 10 trang 36 SGK Hình học 11 NC
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.