Bài tập 6 trang 34 SGK Hình học 11 NC
Gọi F là phép biến hình có tính chất sau đây: Với mọi cặp điểm M, N và ảnh M’, N’ của chúng, ta luôn có \(\overrightarrow {M'N'} = k\overrightarrow {MN} \) , trong đó k là một số không đổi khác 0. Hãy chứng minh rằng F là phép tịnh tiến hoặc phép vị tự
Hướng dẫn giải chi tiết
Ta lấy một điểm A cố định và đặt A’ = F(A)
Theo giả thiết, với điểm M bất kì và ảnh M’ =F(M) của nó, ta có \(\overrightarrow {A'M} = k\overrightarrow {AM} \)
Nếu k = 1, thì \(\overrightarrow {A'M} = \overrightarrow {AM} \), do đó \(\overrightarrow {MM'} = \overrightarrow {AA'} \) ,và F là phép tịnh tiến theo vecto \(\overrightarrow {AA'} \)
Nếu k ≠ 1 thì có điểm O sao cho: \(\overrightarrow {OA'} = k\overrightarrow {OA} \) (với O thỏa\(\overrightarrow {OA'} = \frac{1}{{1 - k}}\overrightarrow {AA'} \))
Khi đó ta có:
\(\overrightarrow {OM'} = \overrightarrow {OA'} + \overrightarrow {A'M'} \)
\(= k\overrightarrow {OA} + k\overrightarrow {AM} = k\overrightarrow {OM} \)
Vậy F là phép vị tự tâm O, tỉ số k.
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Bài tập 4 trang 34 SGK Hình học 11 NC
Bài tập 5 trang 34 SGK Hình học 11 NC
Bài tập 7 trang 34 SGK Hình học 11 NC
Bài tập 8 trang 35 SGK Hình học 11 NC
Bài tập 9 trang 35 SGK Hình học 11 NC
Bài tập 1 trang 35 SGK Hình học 11 NC
Bài tập 2 trang 35 SGK Hình học 11 NC
Bài tập 3 trang 35 SGK Hình học 11 NC
Bài tập 4 trang 35 SGK Hình học 11 NC
Bài tập 5 trang 35 SGK Hình học 11 NC
Bài tập 6 trang 35 SGK Hình học 11 NC
Bài tập 7 trang 36 SGK Hình học 11 NC
Bài tập 8 trang 36 SGK Hình học 11 NC
Bài tập 9 trang 36 SGK Hình học 11 NC
Bài tập 10 trang 36 SGK Hình học 11 NC
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.