OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Viết pt mp (P) đi qua A sao cho khoảng cách từ O đến (P) là lớn nhất

viêt phương trình mặt phẳng (P) đi qua A(2;1;-1) sao cho khoảng cách từ O đến mặt phẳng (P) lớn nhất. (O là gốc tọa độ)

  bởi Thanh Truc 11/10/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải

    Gọi $H$ là hình chiếu của $O$ xuống mặt phẳng $(P)$

    Khi đó, hiển nhiên tam giác $HOA$ là tam giác vuông tại $H$

    \(\Rightarrow d(O,(P))=OH\leq OA\). Do đó để khoảng cách từ $O$ đến mặt phẳng $(P)$ là lớn nhất thì \(H\equiv A\) \(\Rightarrow \overrightarrow{OA}\perp (P)\)

    Gọi \(\overrightarrow {n_P}\) là vector pháp tuyến của $(P)$. Ta có ngay\(\overrightarrow {n_P}=\overrightarrow {OA}=(2;1;-1)\)

    Vậy ta có PTMP $(P)$ là: \(2(x-2)+y-1-1(z+1)=0\Leftrightarrow 2x+y-z-6=0\)

      bởi nguyen tuân 11/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF