OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Hãy lập phương trình của mặt phẳng \((\alpha )\) đi qua điểm M(1; 2; 3) và cắt ba tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất.

Hãy lập phương trình của mặt phẳng \((\alpha )\) đi qua điểm M(1; 2; 3) và cắt ba tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất.

  bởi Ngoc Son 24/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi giao điểm của \((\alpha )\) với ba tia Ox, Oy, Oz lần lượt là A(a; 0; 0), B(0; b; 0), C(0; 0 ; c)

    (a, b, c > 0).

    Mặt phẳng \((\alpha )\) có phương trình theo đoạn chắn là: \(\left( \alpha  \right):\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1\) (1)

    Do \((\alpha )\)  đi qua M(1; 2; 3) nên ta thay tọa độ của điểm M vào (1): \(\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} = 1\)

    Thể tích của tứ diện OABC là  \(V = \dfrac{1}{3}B.h = \dfrac{1}{3}.\dfrac{1}{2}OA.OB.OC\) \( = \dfrac{1}{6}abc\)

    Áp dụng bất đẳng thức Cô-si ta có:  \(1 = \dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} \ge 3\sqrt[3]{{\dfrac{6}{{abc}}}} \) \( \Rightarrow  1 \ge \dfrac{{27.6}}{{abc}}\)

    \( \Rightarrow    abc \ge 27.6 \Rightarrow    V \ge 27\)

    Ta có:  V đạt giá trị nhỏ nhất  \(  \Leftrightarrow  V = 27 \Leftrightarrow   \dfrac{1}{a} = \dfrac{2}{b} = \dfrac{3}{c} = \dfrac{1}{3} \) \(\Leftrightarrow   \left\{ {\begin{array}{*{20}{c}}{a = 3}\\{b = 6}\\{c = 9}\end{array}} \right.\)

    Vậy phương trình mặt phẳng \((\alpha )\) thỏa mãn đề bài là:

    \(\dfrac{x}{3} + \dfrac{y}{6} + \dfrac{z}{9} = 1\) hay \(6x + 3y + 2z – 18 = 0\).

      bởi bach hao 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF