Cho a, b, c là độ dài ba cạnh của một tam giác có chu vi bằng 1
Cho a, b, c là độ dài ba cạnh của một tam giác có chu vi bằng 1. Tìm giá trị lớn nhất của biểu thức:
\(T=\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\)
Câu trả lời (1)
-
\(T=\frac{4}{1-a}+\frac{4}{1-b}+\frac{4}{1-c}-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}=\frac{5a-1}{a-a^2}+\frac{5b-1}{b-b^2}+\frac{5c-1}{c-c^2}\)
Ta có \(\frac{5a-1}{a-a^2}-(18a-3)=\frac{(3a-1)^2(2a-1)}{a-a^2}\leq 0,\ \forall a\in \left ( 0;\frac{1}{2} \right )\)
Từ đó suy ra: \(\frac{5a-1}{a-a^2}\leq 18a-3,\forall a\in \left ( 0;\frac{1}{2} \right )\)Ta cũng có 2 bất đẳng thức tương tự:
\(\frac{5a-1}{a-a^2}\leq 18a-3,\forall a\in \left ( 0;\frac{1}{2} \right )\) và \(\frac{5c-1}{c-c^2}\leq 18c-3,\forall c\in \left ( 0;\frac{1}{2} \right )\)
Cộng các bất đẳng thức này lại với nhau ta có:
\(T=\frac{5a-1}{a-a^2}+\frac{5b-1}{b-b^2}+\frac{5c-1}{c-c^2}\leq 18(a+b+c)-9=9\)
Dấu đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\Rightarrow T_{max}=9\) đạt được \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Vậy Cho a, b, c là độ dài ba cạnh của một tam giác có chu vi bằng 1, thì giá trị lớn nhất
của biểu thức:
\(T=\frac{4}{1-a}+\frac{4}{1-b}+\frac{4}{1-c}-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\) bằng 9 và đạt được khi và chỉ khi \(a=b=c=\frac{1}{3}\)
bởi Lê Trung Phuong09/02/2017
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi có liên quan
-
Tìm giá trị nhỏ nhất của hàm số y= |x+2| trên đoạn [-3;3]?
Mọi người giải giúp mình với ạ, mình cảm ơn ạ
31/08/2020 | 5 Trả lời
-
25/08/2020 | 1 Trả lời
-
25/08/2020 | 0 Trả lời
-
23/08/2020 | 4 Trả lời
-
18/08/2020 | 0 Trả lời
-
16/08/2020 | 1 Trả lời
-
12/08/2020 | 3 Trả lời
-
22/07/2020 | 0 Trả lời
-
06/07/2020 | 2 Trả lời
-
03/07/2020 | 1 Trả lời
-
Tổng M + m bằng
30/05/2020 | 1 Trả lời
-
A. \({M^2} + {m^2}.=4\)
B. \({M^2} + {m^2}=1\)
C. \({M^2} + {m^2}=25\)
D. \({M^2} + {m^2}=2\)
30/05/2020 | 1 Trả lời
-
A. - 2 . B. 2 . C. 1 . D. \( - \frac{4}{3}\) .
31/05/2020 | 1 Trả lời
-
A. f(0). B. f(1).
C. \(f\left( {\sqrt 2 } \right)\). D. f(2).
31/05/2020 | 1 Trả lời
-
A. M + m. B.2M + m .
C. M + 2m. D. 2M + 2m.
30/05/2020 | 1 Trả lời
-
25/05/2020 | 2 Trả lời
-
Câu 2 ạ
06/05/2020 | 0 Trả lời
-
21/04/2020 | 7 Trả lời
-
Tìm giá trị lớn nhất
17/04/2020 | 10 Trả lời
-
Jjh
14/04/2020 | 0 Trả lời