OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 64 trang 15 SBT Toán 9 Tập 1

Giải bài 64 tr 15 sách BT Toán lớp 9 Tập 1

a) Chứng minh:

\(x + 2\sqrt {2x - 4}  = {\left( {\sqrt 2  + \sqrt {x - 2} } \right)^2}\) với \(x \ge 2\);

b) Rút gọn biểu thức:

\(\sqrt {x + 2\sqrt {2x - 4} }  + \sqrt {x - 2\sqrt {2x - 4} } \) với \(x \ge 2\).

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

Áp dụng hằng đẳng thức: 

\({(a + b)^2} = {a^2} + 2ab + {b^2}\)

\({(a - b)^2} = {a^2} - 2ab + {b^2}\)

Ta có: \(\sqrt {{A^2}}  = \left| A \right|\)

Với \(A \ge 0\) thì ta có \(\left| A \right| = A\)

Với \(A < 0\) thì ta có \(\left| A \right| = -A\)

Lời giải chi tiết

a) Ta có:

\(\eqalign{
& x + 2\sqrt {2x - 4} = x + 2\sqrt {2\left( {x - 2} \right)} \cr 
& = 2 + 2\sqrt 2 .\sqrt {x - 2} + x - 2 \cr} \)

\( = {\left( {\sqrt 2 } \right)^2} + 2.\sqrt 2 .\sqrt {x - 2}  + {\left( {\sqrt {x - 2} } \right)^2}\)

\( = {\left( {\sqrt 2  + \sqrt {x - 2} } \right)^2}\) (với \(x \ge 2\))

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b) Ta có:

\(\sqrt {x + 2\sqrt {2x - 4} }  + \sqrt {x - 2\sqrt {2x - 4} } \)

\( = \sqrt {2 + 2\sqrt 2 .\sqrt {x - 2}  + x - 2}  + \sqrt {2 - 2\sqrt 2 .\sqrt {x - 2}  + x - 2} \)

\( = \sqrt {{{\left( {\sqrt 2  + \sqrt {x - 2} } \right)}^2}}  + \sqrt {{{\left( {\sqrt 2  - \sqrt x  - 2} \right)}^2}} \)

\( = \left| {\sqrt 2  + \sqrt {x - 2} } \right| + \left| {\sqrt 2  - \sqrt {x - 2} } \right|\)

\( = \sqrt 2  + \sqrt {x - 2}  + \left| {\sqrt 2  - \sqrt {x - 2} } \right|\)

- Nếu \(\sqrt 2  - \sqrt {x - 2}  \ge 0\) thì 

\(\eqalign{
& \sqrt {x - 2} \le \sqrt 2 \Leftrightarrow x - 2 \le 2 \cr 
& \Leftrightarrow x - 2 \le 2 \Leftrightarrow x \le 4 \cr} \)

Với \(2 \le x \le 4\) thì \(\left| {\sqrt 2  - \sqrt {x - 2} } \right| = \sqrt 2  - \sqrt {x - 2} \)

Ta có: \(\sqrt 2  + \sqrt {x - 2}  + \sqrt 2  - \sqrt {x - 2}  = 2\sqrt 2 \)

- Nếu \(\sqrt 2  - \sqrt {x - 2}  < 0\) thì 

\(\sqrt {x - 2}  > \sqrt 2  \Leftrightarrow x - 2 > 2 \Leftrightarrow x > 4\)

Với x > 4 thì \(\left| {\sqrt 2  - \sqrt {x - 2} } \right| = \sqrt {x - 2}  - \sqrt 2 \)

Ta có: \(\sqrt 2  + \sqrt {x - 2}  + \sqrt {x - 2}  - \sqrt 2  = 2\sqrt {x - 2} \)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 64 trang 15 SBT Toán 9 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF