OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 44 trang 130 SGK Toán 9 Tập 2

Bài tập 44 tr 130 sách GK Toán lớp 9 Tập 2

Cho hình vuông \(ABCD\) nội tiếp đường tròn tâm \(O\), bán kính \(R\) và \(GEF\) là tam giác đều nội tiếp đường tròn đó, \(EF\) là dây song song với \(AB\) (h.119). Cho hình đó quay quanh trục \(GO\). Chứng minh rằng:

a) Bình phương thể tích của hình trụ sinh ra bởi hình vuông bằng tích của thể tích hình cầu sinh ra bởi hình tròn và thể tích hình nón do tam giác đều sinh ra.

b) Bình phương diện tích toàn phần của hình trụ bằng tích của diện tích hình cầu và diện tích toàn phần của hình nón.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

+) Thể tích hình trụ: \(V=\pi r^2 h.\)

+) Thể tích hình nón: \(V = \dfrac{1}{3}\pi {r^2}h.\)

+) Thể tích hình cầu:  \(V = \dfrac{4}{3}\pi {r^3}.\) 

+) Diện tích toàn phần của hình trụ: \({S_{tp}} = 2\pi rh + 2\pi {r^2}.\)

+) Diện tích toàn phần của hình nón: \({S_{tp}} = \pi rl + \pi {r^2}.\) 

Lời giải chi tiết

Khi quay hình vẽ quanh trục \(GO\) ta được:

a) Thể tích hình trụ được tạo bởi hình vuông \(ABCD\) là:

\(\displaystyle V = \pi {\left( {{{AB} \over 2}} \right)^2}.BC\) với \(BC=AB = \sqrt {OA^2+OB^2}=\sqrt {2R^2}=R\sqrt2.\)

\(\eqalign{
& \Rightarrow V = \pi {\left( {{{R\sqrt 2 } \over 2}} \right)^2}.R\sqrt 2 \cr
& = \pi .{{2{{\rm{R}}^2}} \over 4}.R\sqrt 2 = {{\pi {{\rm{R}}^3}\sqrt 2 } \over 2} \cr
& \Rightarrow {V^2} = \left( {{{\pi {R^3}\sqrt 2 } \over 2}} \right)^2 = {{{\pi ^2}{R^6}} \over 2}(1) \cr}\)

Thể tích hình cầu có bán kính \(R\) là: \(\displaystyle {V_1} = {4 \over 3}\pi {R^3}\) 

Thể tích hình nón có bán kính đường tròn đáy bằng \(\displaystyle {{EF} \over 2}\) là:

 \(\displaystyle {V_2} = {1 \over 3}\pi {\left( {{{EF} \over 2}} \right)^2}.GH\)

Với \(EF = R\sqrt3\) (cạnh tam giác đều nội tiếp trong đường tròn \((O;R)\))

và \(\displaystyle GH = {{EF\sqrt 3 } \over 2} = {{R\sqrt {3.} \sqrt 3 } \over 2} = {{3R} \over 2}\) 

Thay vào V2, ta có: \(\displaystyle {V_2} = {1 \over 3}\pi {\left( {{{R\sqrt 3 } \over 2}} \right)^2}.{{3{\rm{R}}} \over 2} = {3 \over 8}\pi {R^3}\) 

Ta có: \(\displaystyle {V_1}{V_2} = {4 \over 3}\pi {R^3}.{3 \over 8}\pi {R^3} = {{{\pi ^2}{R^6}} \over 2}(2)\)

So sánh (1) và (2) ta được : \({V^2} = {V_1}.{V_2}\)

b) Diện tích toàn phần của hình trụ có bán kính \(\displaystyle {{AB} \over 2}\) là: 

\(\eqalign{
& S = 2\pi \left( {{{AB} \over 2}} \right).BC + 2\pi {\left( {{{AB} \over 2}} \right)^2} \cr
& S = 2\pi .{{R\sqrt 2 } \over 2}R\sqrt 2 + 2\pi {\left( {{{R\sqrt 2 } \over 2}} \right)^2} \cr
& S = 2\pi {R^2} + \pi {R^2} = 3\pi {R^2} \cr
& \Rightarrow {S^2} = {\left( {3\pi {R^2}} \right)^2} = 9{\pi ^2}.{R^4}(1) \cr} \) 

Diện tích mặt cầu có bán kính \(R\) là: \({S_1} = {\rm{ }}4\pi {R^2}\) (2)

Diện tích toàn phần của hình nón là: 

\(\displaystyle {S_2} = \pi {{EF} \over 2}.FG + \pi {\left( {{{EF} \over 2}} \right)^2}\)

\(\displaystyle = \pi {{R\sqrt 3 } \over 2}.R\sqrt 3  + \pi {\left( {{{R\sqrt 3 } \over 2}} \right)^2} = {{9\pi {R^2}} \over 4}\) 

Ta có: \(\displaystyle {S_1}{S_2} = 4\pi {R^2}.{{9\pi {R^2}} \over 4} = 9{\pi ^2}{R^4}(2)\)

So sánh (1) và (2) ta có: \({S^2} = {\rm{ }}{S_1}.{\rm{ }}{S_2}\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 44 trang 130 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF