OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 74 trang 147 SBT Toán 7 Tập 1

Giải bài 74 tr 147 sách BT Toán lớp 7 Tập 1

Tính số đo các góc của tam giác \(ACD\) như hình 60.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng: 

- Trong tam giác vuông hai góc nhọn phụ nhau.

- Góc ngoài tam giác bằng tổng hai góc trong không kề với nó.

Lời giải chi tiết

Tam giác \(ADC\) vuông tại \(A\) nên \(\widehat {DAC}=90^0\)

\( ∆ABC\) vuông cân tại \(A\) 

\( \Rightarrow \widehat {ABC} = \widehat {ACB} \) (tính chất tam giác cân) và \( \widehat {ABC} + \widehat {ACB}=90^o \) (trong tam giác vuông hai góc nhọn phụ nhau).

\( \Rightarrow \widehat {ABC} = \widehat {ACB} = 45^\circ \).

Lại có \(BC = BD\) (gt) \(\Rightarrow ∆BCD\) cân tại \(B \).

\(\Rightarrow \widehat {BC{\rm{D}}} = \widehat D\) (tính chất tam giác cân)

Xét \(∆BCD\) có \(\widehat {ABC}\) là góc ngoài tại đỉnh \(B\).

Do đó \(\widehat {ABC} = \widehat {BC{\rm{D}}} + \widehat D\) (tính chất góc ngoài của tam giác)

\(\Rightarrow \widehat {ABC} = 2\widehat {BC{\rm{D}}}\)

\(\displaystyle \Rightarrow \widehat {BC{\rm{D}}} = {{\widehat {ABC} } \over 2}\)

\(\displaystyle \Rightarrow \widehat {BC{\rm{D}}} = {{45^\circ } \over 2} = 22^\circ 30'\)

Vậy \(\widehat {AC{\rm{D}}} = \widehat {ACB} + \widehat {BC{\rm{D}}} = 45^\circ  + 22^\circ 30' \)\(\,= 67^\circ 30'\)

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 74 trang 147 SBT Toán 7 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF