OFF
OFF
ADMICRO
07AMBIENT
Banner-Video
VIDEO

Bài tập 4.29 trang 206 SBT Toán 12

Giải bài 4.29 tr 206 SBT Toán 12

Chứng minh rằng hai số phức liên hợp \(z\) và \(\overline z \) là hai nghiệm của một phương trình bậc hai với hệ số thực.

ADSENSE
QUẢNG CÁO

Hướng dẫn giải chi tiết

Áp dụng: Nếu hai số  và  có: \(u + v = S;uv = P\)  thì  và  là nghiệm của phương trình \({X^2} - SX + P = 0\)

Gọi \(z = a + bi \Rightarrow \bar z = a - bi,a,b \in R\)

Ta có:

\(\left\{ \begin{array}{l}
z + \bar z = a + bi + \left( {a - bi} \right) = 2a\\
z.\bar z = \left( {a + bi} \right)\left( {a - bi} \right) = {a^2} + {b^2}
\end{array} \right.\)

Vậy \(z\) và \(\overline z \) là hai nghiệm của phương trình: \({X^2} - 2aX + {a^2} + {b^2} = 0\)

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 4.29 trang 206 SBT Toán 12 HAY thì click chia sẻ 
  • Tường Vi

    Giải phương trình sau trên tập hợp số phức: \(7{z^2} + {\rm{ }}3z + 2 = 0\). 

    Theo dõi (0) 1 Trả lời
  • bich thu

    Giải phương trình sau trên tập hợp số phức: \( - 3{z^2} +2z - 1 = 0\). 

    Theo dõi (0) 1 Trả lời
  • RANDOM
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Phạm Phú Lộc Nữ

    Tìm các căn bậc hai phức của các số sau: \(-7; -8; -12; -20; -121\) 

    Theo dõi (0) 1 Trả lời
MGID
ON