OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 3.26 trang 114 SBT Hình học 12

Giải bài 3.26 tr 114 SBT Hình học 12

Lập phương trình của mặt phẳng \((\alpha )\) đi qua điểm M(3; -1; -5) đồng thời vuông góc với hai mặt phẳng:

\((\beta )\) : 3x - 2y + 2z + 7 = 0

\((\gamma )\) : 5x – 4y + 3z + 1 = 0

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Mặt phẳng \((\alpha )\) vuông góc với hai mặt phẳng \((\beta )\) và \((\gamma )\), do đó hai vecto có giá song song hoặc nằm trên \((\alpha )\) là: \(\overrightarrow {{n_\beta }}  = (3; - 2;2)\) và \(\overrightarrow {{n_\gamma }}  = (5; - 4;3)\).

Suy ra \(\overrightarrow {{n_\alpha }}  = \overrightarrow {{n_\beta }}  \wedge \overrightarrow {{n_\gamma }}  = (2;1; - 2)\)

Mặt khác \((\alpha )\) đi qua điểm M(3; -1; -5) và có vecto pháp tuyến là \(\overrightarrow {{n_\alpha }} \). Vậy phương trình của \((\alpha )\) là:  2(x – 3) + 1(y + 1) – 2(z + 5) = 0 hay 2x + y – 2z – 15 = 0.

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3.26 trang 114 SBT Hình học 12 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF