OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Một hình trụ có bán kính đáy bằng 1, thiết diện qua trục là hình vuông. Tính thể tích khối cầu ngoại tiếp hình trụ là

\(\eqalign{  & (A)\;6\pi \sqrt 3 ;  \cr  & (B)\;3\pi \sqrt 3 ;  \cr  & (C)\;{{4\pi \sqrt 2 } \over 3};  \cr  & (D)\;{{8\pi \sqrt 2 } \over 3}. \cr} \)

  bởi Nguyễn Minh Hải 07/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Chọn (D). 

    Ta có: \(OM = MA = 1\)

    \( \Rightarrow OA = \sqrt {O{M^2} + M{A^2}} \) \( = \sqrt {{1^2} + {1^2}}  = \sqrt 2 \)

    \( \Rightarrow V = \frac{4}{3}\pi .O{A^3}\) \( = \frac{4}{3}\pi .{\left( {\sqrt 2 } \right)^3} = \frac{{8\pi \sqrt 2 }}{3}\)

      bởi Nguyễn Hoài Thương 07/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF