OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Cho biết có bao nhiêu số nguyên \(m\) để phương trình \(f\left( {{x^3} - 3x} \right) = m\) có \(6\) nghiệm phân biệt thuộc đoạn \(\left[ { - 1;2} \right]?\)

  bởi bala bala 05/05/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Đặt \(t = {x^3} - 3x,\,\,x \in \left[ {1;2} \right]\) ta có \(t'\left( x \right) = 3{x^2} - 3 = 0 \Leftrightarrow x =  \pm 1\)

    BBT:

    \( \Rightarrow t \in \left[ { - 2;2} \right]\).

    Ứng với \(t = -2\) có 1 giá trị \(x \in \left[ { - 1;2} \right]\).

    Ứng với \(t \in \left( { - 2;2} \right]\)  có 2 giá trị \(x \in \left[ { - 1;2} \right]\).

    Phương trình \(f\left( {{x^3} - 3x} \right) = m\) có 6 nghiệm thuộc \(\left[ { - 1;2} \right]\) khi và chỉ khi phương trình \(f\left( t \right) = m\) có 3 nghiệm phân biệt thuộc \(\left( { - 2;2} \right]\).

    Dựa vào đồ thị hàm số \(y = f\left( x \right)\) ta có: Phương trình \(f\left( t \right) = m\) có 3 nghiệm phân biệt thuộc \(\left( { - 2;2} \right]\) khi và chỉ khi \(m = 0,\,\,m =  - 1\,\,\left( {Do\,\,m \in \mathbb{Z}} \right)\).

      bởi can tu 05/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF