Phần hướng dẫn giải bài tập SGK Toán 9 Chương 3 Bài 7 Ôn tập chương Hệ phương trình bậc nhất hai ẩn sẽ giúp các em nắm được phương pháp và rèn luyện kĩ năng các dạng bài tập từ SGK Toán 9.
-
Bài tập 40 trang 27 SGK Toán 9 Tập 2
Giải các hệ phương trình sau và minh họa hình học kết quả tìm được:
a)\(\left\{ \matrix{2{\rm{x}} + 5y = 2 \hfill \cr {2 \over 5}x + y = 1 \hfill \cr} \right.\)
b) \(\left\{ \matrix{0,2{\rm{x}} + 0,1y = 0,3 \hfill \cr 3{\rm{x}} + y = 5 \hfill \cr} \right.\)
c) \(\left\{ \matrix{{3 \over 2}x - y = {1 \over 2} \hfill \cr 3{\rm{x}} - 2y = 1 \hfill \cr} \right.\)
-
Bài tập 41 trang 27 SGK Toán 9 Tập 2
Giải các hệ phương trình sau:
a)
\(\left\{ \matrix{
x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1 \hfill \cr
\left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1 \hfill \cr} \right.\)b)
\(\left\{ \matrix{
{{2{\rm{x}}} \over {x + 1}} + {y \over {y + 1}} = \sqrt 2 \hfill \cr
{x \over {x + 1}} + {{3y} \over {y + 1}} = - 1 \hfill \cr} \right.\) -
Bài tập 42 trang 27 SGK Toán 9 Tập 2
Giải hệ phương trình\(\left\{ \matrix{2{\rm{x}} - y = m \hfill \cr 4{\rm{x}} - {m^2}y = 2\sqrt 2 \hfill \cr} \right.\) trong mỗi trường hợp sau:
a) \(m = -\sqrt{2}\)
b) \(m = \sqrt{2}\)
c) \(m = 1\)
-
Bài tập 43 trang 27 SGK Toán 9 Tập 2
Hai người ở hai địa điểm A và B cách nhau \(3,6\) km, khởi hành cùng một lúc, đi ngược chiều nhau và gặp nhau ở một địa điểm cách A là \(2\) km. Nếu cả hai cùng giữ nguyên vận tốc như trường hợp trên, nhưng người đi chậm hơn xuất phát trước người kia \(6\) phút thì họ sẽ gặp nhau ở chính giữa quãng đường. Tính vận tốc của mỗi người.
- VIDEOYOMEDIA
-
Bài tập 44 trang 27 SGK Toán 9 Tập 2
Một vật có khối lượng 124 g và thể tích 15 \(c{m^3}\) là hợp kim của đồng và kẽm. Tính xem trong đó có bao nhiêu gam đồng và bao nhiêu gam kẽm, biết rằng cứ 89 g đồng thì có thể tích là 10cm3 và 7g kẽm có thể tích là 1cm3
-
Bài tập 45 trang 27 SGK Toán 9 Tập 2
Hai đội xây dựng làm chung một công việc và dự định hoàn thành trong 12 ngày. Nhưng khi làm chung được 8 ngày thì đội I được điều động đi làm việc khác. Tuy chỉ còn một mình độ II làm việc nhưng do cải tiến cách làm, năng suất của đội II tăng gấp đôi nên họ làm xong phần việc còn lại trong 3,5 ngày. Hỏi với năng suất ban đầu, nếu mỗi đội làm một mình thì phải làm trong bao nhiêu ngày mới xong công việc trên?
-
Bài tập 46 trang 27 SGK Toán 9 Tập 2
Năm ngoái, hai đơn vị sản xuất nông nghiệp thu hoạch được 720 tấn thóc. Năm nay, đơn vị thứ nhất làm vượt mức 15% , đơn vị thứ hai làm vượt mức 12% so với năm ngoái. Do đó cả hai đơn vị thu hoạch được 819 tấn thóc. Hỏi mỗi năm, mỗi đơn vị thu hoạch được bao nhiêu tấn thóc?
-
Bài tập 51 trang 15 SBT Toán 9 Tập 2
Giải các hệ phương trình sau:
\(a)\left\{ {\matrix{
{4x + y = - 5} \cr
{3x - 2y = - 12} \cr} } \right.\)\(b)\left\{ {\matrix{
{x + 3y = 4y - x + 5} \cr
{2x - y = 3x - 2\left( {y + 1} \right)} \cr} } \right.\)\(c)\left\{ {\matrix{
{3\left( {x + y} \right) + 9 = 2\left( {x - y} \right)} \cr
{2\left( {x + y} \right) = 3\left( {x - y} \right) - 11} \cr} } \right.\)\(d)\left\{ {\matrix{
{2\left( {x + 3} \right) = 3\left( {y + 1} \right) + 1} \cr
{3\left( {x - y + 1} \right) = 2\left( {x - 2} \right) + 3} \cr} } \right.\) -
Bài tập 52 trang 15 SBT Toán 9 Tập 2
Giải các hệ phương trình sau:
\(a)\left\{ {\matrix{
{\sqrt 3 x - 2\sqrt 2 y = 7} \cr
{\sqrt 2 x + 3\sqrt 3 y = - 2\sqrt 6 } \cr} } \right.\)\(b)\left\{ {\matrix{
{\left( {\sqrt 2 + 1} \right)x - \left( {2 - \sqrt 3 } \right)y = 2} \cr
{\left( {2 + \sqrt 3 } \right)x + \left( {\sqrt 2 - 1} \right)y = 2} \cr} } \right.\) -
Bài tập 53 trang 15 SBT Toán 9 Tập 2
Tìm các giá trị của \(a\) và \(b\) để hệ phương trình:
\(\left\{ {\matrix{
{ax + by = 3} \cr
{2ax - 3by = 36} \cr} } \right.\)có nghiệm là \((3; -2).\)
-
Bài tập 54 trang 15 SBT Toán 9 Tập 2
Tìm một số có hai chữ số biết rằng \(2\) lần chữ số hàng chục lớn hơn \(5\) lần chữ số hàng đơn vị là \(1\) và chữ số hàng chục chia cho chữ số hàng đơn vị được thương là \(2\) và dư cũng là \(2.\)
-
Bài tập 55 trang 16 SBT Toán 9 Tập 2
Một xe lửa phải vận chuyển một lượng hàng. Nếu xếp vào mỗi toa \(15\) tấn hàng thì còn thừa lại \(3\) tấn, nếu xếp vào mỗi toa \(16\) tấn thì còn có thể chở thêm \(5\) tấn nữa. Hỏi xe lửa có mấy toa và phải chở bao nhiêu tấn hàng?
-
Bài tập 56 trang 16 SBT Toán 9 Tập 2
Hai đội xe chở cát để san lấp một khu đất. Nếu hai đội cùng làm thì trong \(12\) ngày xong việc. Nhưng hai đội chỉ cùng làm trong \(8\) ngày. Sau đó đội thứ nhất làm tiếp một mình trong \(7\) ngày nữa thì xong việc. Hỏi mỗi đội làm một mình thì bao lâu xong việc.
-
Bài tập 57 trang 16 SBT Toán 9 Tập 2
Hai xe lửa khởi hành đồng thời từ hai ga cách nhau \(750km\) và đi ngược chiều nhau, sau \(10\) giờ chúng gặp nhau. Nếu xe thứ nhất khởi hành trước xe thứ hai \(3\) giờ \(45\) phút thì sau khi xe thứ hai đi được \(8\) giờ chúng gặp nhau. Tính vận tốc của mỗi xe.
-
Bài tập III.1 trang 16 SBT Toán 9 Tập 2
Giải các hệ phương trình:
\(a)\left\{ {\matrix{
{\left( {x + 3} \right)\left( {y + 5} \right) = \left( {x + 1} \right)\left( {y + 8} \right)} \cr
{\left( {2x - 3} \right)\left( {5y + 7} \right) = 2\left( {5x - 6} \right)\left( {y + 1} \right)} \cr} } \right.\)\(b)\left\{ {\matrix{
{{{2x - 3} \over {2y - 5}} = {{3x + 1} \over {3y - 4}}} \cr
{2\left( {x - 3} \right) - 3\left( {y + 2} \right) = - 16} \cr} } \right.\) -
Bài tập III.2 trang 16 SBT Toán 9 Tập 2
Năm nay người ta áp dụng kĩ thuật mới trên hai cánh đồng trồng lúa ở ấp Minh Châu. Vì thế lượng lúa thu được trên cánh đồng thứ nhất tăng lên 30% so với năm ngoái, trên cánh đồng thứ hai lượng lúa thu được tăng 20%. Tổng cộng cả hai cánh đồng thu được \(630\) tấn. Hỏi trên mỗi cánh đồng năm nay thu được bao nhiêu lúa, biết rằng trên cả hai cánh đồng này năm ngoái chỉ thu được \(500\) tấn?
-
Bài tập III.3 trang 16 SBT Toán 9 Tập 2
Người ta trộn hai loại quặng sắt với nhau, một loại chứa 72% sắt, loại thứ hai chứa 58% sắt được một loại quặng chứa 62% sắt. Nếu tăng khối lượng của mỗi loại quặng thêm \(15\) tấn thì được một loại quặng chứa 63,25% sắt. Tìm khối lượng quặng của mỗi loại đã trộn.
-
Bài tập III.4 trang 16 SBT Toán 9 Tập 2
Một người đi ngựa và một người đi bộ đều đi từ bản \(A\) đến bản \(B\). Người đi ngựa đến \(B\) trước người đi bộ \(50\) phút rồi lập tức quay trở về \(A\) và gặp người đi bộ tại một địa điểm cách \(B\) là \(2km\). Trên cả quãng đường từ \(A\) đến \(B\) và ngược lại, người đi ngựa đi hết \(1\) giờ \(40\) phút. Hãy tính khoảng cách \(AB\) và vận tốc của mỗi người.