OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 68 trang 50 SBT Toán 7 Tập 2

Giải bài 68 tr 50 sách BT Toán lớp 7 Tập 2

Cho tam giác \(ABC\) cân tại \(A,\) đường trung tuyến \(AM.\) Đường trung trực của \(AC\) cắt đường thẳng \(AM\) ở \(D.\) Chứng minh rằng \(DA = DB.\) 

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng: 

+) Trong một tam giác cân, đường trung trực của cạnh đáy đồng thời là đường trung tuyến ứng với cạnh này.

+) Ba đường trung trực của tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó.

+) Điểm thuộc đường trung trực của đoạn thẳng thì cách đều hai đầu mút của đường thẳng đó.

Lời giải chi tiết

Gọi \(E\) là trung điểm cạnh \(AC\)

Vì \(∆ABC\) cân tại \(A, AM\) là đường trung tuyến ứng với cạnh đáy \(BC\) nên \(AM\) cũng là đường trung trực của \(BC.\) 

Suy ra \(D\) là giao điểm của các đường trung trực \(AC\) và \(BC\) nên \(D\) thuộc trung trực của \(AB\) (vì ba đường trung trực của tam giác cùng đi qua một điểm).

Vậy \(DA = DB\) (tính chất đường trung trực).

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 68 trang 50 SBT Toán 7 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF