Phần hướng dẫn giải bài tập Toán 12 Chương 2 Bài 6 Bất phương trình mũ và bất phương trình lôgarit sẽ giúp các em nắm được phương pháp và rèn luyện kĩ năng các giải bài tập từ SGK Giải tích 12 Cơ bản và Nâng cao.
-
Bài tập 1 trang 89 SGK Giải tích 12
Giải các bất phương trình mũ:
a) \(\small 2^{-x^{2}+3x}<4\) .
b) \(\left ( \frac{7}{9} \right )^{2x^{2}-3x}\geq \frac{9}{7}\) .
c) \(3^{x+2} + 3^{x-1} \leq 28\).
d) \(4^x - 3.2^x + 2 > 0.\)
-
Bài tập 2 trang 90 SGK Giải tích 12
Giải các bất phương trình lôgarit:
a) \(\small log_8(4- 2x) \geq 2\).
b) \(log_{\frac{1}{5}}(3x - 5)>log_{\frac{1}{5}}(x +1)\).
c) \(log_{{0,2}}x - log_5(x- 2) < log_{0,2}3\).
d) \(log_{3}^{2}x- 5log_3x + 6 \leq 0\) .
-
Bài tập 2.59 trang 131 SBT Toán 12
Giải các bất phương trình mũ sau :
b) \({4^{|x + 1|}} > 16\)
c) \({2^{ - {x^2} + 3x}} < 4\)
d) \({\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \ge \frac{9}{7}\)
e) \({11^{\sqrt {x + 6} }} \ge {11^x}\)
g) \({2^{2x - 1}} + {2^{2x - 2}} + {2^{2x - 3}} \ge 448\)
h) \({16^x} - {4^x} - 6 \le 0\)
i) \(\frac{{{3^x}}}{{{3^x} - 2}} < 3\)
-
Bài tập 2.60 trang 132 SBT Toán 12
Giải các bất phương trình logarit sau :
a) \({\log _{\frac{1}{3}}}(x - 1) \ge - 2\)
b) \({\log _3}(x - 3) + {\log _3}(x - 5) < 1\)
c) \({\log _{\frac{1}{2}}}\frac{{2{x^2} + 3}}{{x - 7}} < 0\)
d) \({\log _{\frac{1}{3}}}{\log _2}{x^2} > 0\)
e) \(\frac{1}{{5 - \log x}} + \frac{2}{{1 + \log x}} < 1\)
g) \(4{\log _4}x - 33{\log _x}4 \le 1\)
- VIDEOYOMEDIA
-
Bài tập 2.61 trang 132 SBT Toán 12
Giải các bất phương trình sau bằng đồ thị
a) \({\left( {\frac{1}{2}} \right)^x}\)
b) \({\left( {\frac{1}{3}} \right)^x} \ge x + 1\)
c) \({\log _{\frac{1}{3}}}x > 3x\)
d) \({\log _2}x \le 6 - x\)
-
Bài tập 2.62 trang 132 SBT Toán 12
Tìm tập hợp nghiệm của bất đẳng thức \({\left( {\frac{1}{2}} \right)^{\frac{1}{x}}} \ge {\left( {\frac{1}{2}} \right)^4}\)
A. \(( - \infty ;0)\)
B. \(\left( {\frac{1}{4}; + \infty } \right)\)
C. \(( - \infty ;0) \cup \left( {\frac{1}{4}; + \infty } \right)\)
D. \(( - \infty ;0) \cup \left[ {\frac{1}{4}; + \infty } \right)\)
-
Bài tập 2.63 trang 132 SBT Toán 12
Tìm
, biết \(\lg 2x < 1\)A.
B.
C.
D.
-
Bài tập 2.64 trang 132 SBT Toán 12
Tìm tập hợp nghiệm của bất phương trình \({\log _3}\frac{{2x}}{{x + 1}} > 1\)
A. \(( - \infty ; - 3)\)
B. \(( - 1; + \infty )\)
C. \(( - \infty ; - 3) \cup ( - 1; + \infty )\)
D.
-
Bài tập 80 trang 129 SGK Toán 12 NC
Giải các bất phương trình sau:
\(\begin{array}{l}
a){2^{3 - 6x}} > 1\\
b){16^x} > 0,125
\end{array}\) -
Bài tập 81 trang 129 SGK Toán 12 NC
Giải các bất phương trình sau:
\(\begin{array}{*{20}{l}}
{a){{\log }_5}(3x - 1) < 1}\\
{b){{\log }_{\frac{1}{3}}}(5x - 1) > 0}\\
{c){{\log }_{0,5}}({x^2} - 5x + 6) \ge - 1}\\
{d){{\log }_3}\frac{{1 - 2x}}{x} \le 0.}
\end{array}\) -
Bài tập 82 trang 130 SGK Toán 12 NC
Giải bất phương trình:
\(\begin{array}{*{20}{l}}
{a)\log _{0,5}^2x + {{\log }_{0,5}}x - 2 \le 0}\\
{b){2^x} + {2^{ - x + 1}} - 3 < 0}
\end{array}\) -
Bài tập 83 trang 130 SGK Toán 12 NC
Giải bất phương trình:
\(\begin{array}{l}
a){\log _{0,1}}\left( {{x^2} + x - 2} \right) > {\log _{0,1}}\left( {x + 3} \right)\\
b) {\log _{\frac{1}{3}}}\left( {{x^2} - 6x + 5} \right) + 2{\log _3}\left( {2 - x} \right) \ge 0
\end{array}\)