OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 4.48 trang 209 SBT Toán 12

Giải bài 4.48 tr 209 SBT Toán 12

Cho \({z_1},{z_2} \in C\) là hai nghiệm của một phương trình bậc hai với hệ số thực. Khẳng định nào sau đây là sai?

A. \({z_1} + {z_2} \in R\)             

B. \({z_1}.{z_2} \in R\)

C. \({z_1} - {z_2} \in R\)             

D. \(z_1^2 + z_2^2 \in R\)

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết

Giả sử \({z_1},{z_2}\) là nghiệm của phương trình bậc hai hệ số thực \(a{z^2} + bz + c = 0\). Khi đó:

\(\left\{ {\begin{array}{*{20}{l}}
{{z_1} + {z_2} =  - \frac{b}{a} \in R}\\
{{z_1}{z_2} = \frac{c}{a} \in R}
\end{array}} \right.\) nên A, B đúng.

Đáp án C: \({z_1} - {z_2}\) chưa chắc thuộc R, trong trường hợp \({z_1},{z_2}\) không phải số thực thì điều này không đúng.

Đáp án D: \(z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} \right)^2} - 2{z_1}{z_2} = \frac{{{b^2}}}{{{a^2}}} - 2.\frac{c}{a} \in R\).

D đúng.

Chọn C.

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 4.48 trang 209 SBT Toán 12 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF