OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 3.47 trang 134 SBT Toán 11

Giải bài 3.47 tr 134 SBT Toán 11

Tính tổng 

a) \(\frac{1}{2} + \frac{3}{{{2^2}}} + \frac{5}{{{2^3}}} + ... + \frac{{2n - 1}}{{{2^n}}}\)

b) \({1^2} - {2^2} + {3^2} - {4^2} + ... + {( - 1)^{n - 1}}.{n^2}\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

a) Đặt \({{S_n} = \frac{1}{2} + \frac{3}{{{2^2}}} + \frac{5}{{{2^3}}} + ... + \frac{{2n - 1}}{{{2^n}}}}\)

\({ \Rightarrow 2{S_n} = 1 + \frac{3}{2} + \frac{5}{{{2^2}}} + ... + \frac{{2n - 1}}{{{2^{n - 1}}}}}\)

Ta có:

\(\begin{array}{*{20}{l}}
{\begin{array}{*{20}{c}}
{2{S_n} - {S_n} = 1 + \left( {\frac{3}{2} - \frac{1}{2}} \right) + \left( {\frac{5}{{{2^2}}} - \frac{3}{{{2^2}}}} \right) + ... + }
\end{array}\left( {\frac{{2n - 1}}{{{2^n} - 1}} - \frac{{2n - 3}}{{{2^{n - 1}}}}} \right) - \frac{{2n - 1}}{{{2^n}}}}\\
{ \Leftrightarrow {S_n} = 1 + 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{n - 2}}}} - \frac{{2n - 1}}{{{2^n}}}}\\
{ = 1 + \frac{{1\left[ {{{\left( {\frac{1}{2}} \right)}^{n - 1}} - 1} \right]}}{{\frac{1}{2} - 1}} - \frac{{2n - 1}}{{{2^n}}}}\\
{ = 1 + \frac{{{2^n} - 2}}{{{2^{n - 1}}}} - \frac{{2n - 1}}{{{2^n}}}}\\
{ = \frac{{{2^n} + {{2.2}^n} - 4 - 2n + 1}}{{{2^n}}}}\\
{ = \frac{{{{3.2}^n} - 2n - 3}}{{{2^n}}} = 3 - \frac{{2n + 3}}{{{2^n}}}}
\end{array}\)

b) Hướng dẫn: \({n^2} - {\left( {n + 1} \right)^2} =  - 2n - 1\)

Ta có:

\(\begin{array}{l}
{1^2} - {2^2} =  - 2.1 - 1 =  - 3\\
{3^2} - {4^2} =  - 2.3 - 1 =  - 7\\
{5^2} - {6^2} =  - 2.5 - 1 =  - 11\\
...
\end{array}\)

Ta có: 3,7,11,.. là cấp số cộng

Với 

Ta có:  là tổng của k số hạng của cấp số cộng

\(\begin{array}{l}
{S_n} = {S_{2k}} = \frac{{k\left[ {2{u_1} + \left( {k - 1} \right)d} \right]}}{2}\\
 = \frac{{k\left[ {2.\left( { - 3} \right) + \left( {k - 1} \right).\left( { - 4} \right)} \right]}}{2} = k\left( { - 2k - 1} \right)
\end{array}\)

Với 

Ta có:

\(\begin{array}{l}
{S_n} = {S_{2k}} + {( - 1)^{2(k + 1) - 1}}.{(2k + 1)^2}\\
 = k( - 2k - 1) + {( - 1)^{2k + 1}}{(2k + 1)^2}\\
 = k( - 2k - 1) - {(2k + 1)^2} = (2k + 1)( - 3k - 1)
\end{array}\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3.47 trang 134 SBT Toán 11 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Nguyễn Xuân Ngạn

    A. \({u_n} = 7n + 7\) 

    B. \({u_n} = 7n\)

    C. \({u_n} = 7n + 1\)  

    D. không viết được dưới dạng công thức.

    Theo dõi (0) 1 Trả lời
  • Thuy Kim

    A. Bị chặn   

    B. Không bị chặn  

    C. Bị chặn trên   

    D. Bị chặn dưới

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    thuy linh

    A. 2  

    B. 4   

    C. 1  

    D. Không có

    Theo dõi (0) 1 Trả lời
  • Cam Ngan

    A. Dãy số tăng, bị chặn  

    C. Dãy số giảm, bị chặn trên

    B. Dãy số tăng, bị chặn dưới   

    D. Cả A, B, C đều sai

    Theo dõi (0) 1 Trả lời
NONE
OFF