OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Xác định tọa độ A', C', B, D và tâm K của hình hộp

Em sẽ rất biết ơn ai giải giúp em bài này!

Cho hình hộp ABCD.A'B'C'D' có A(-3;2;1), C(4;2;0), B'(-2;1;1), D'(3;5;4)
a. Xác định tọa độ A', C', B, D và tâm K của hình hộp
b. Tìm điểm M trên đường thẳng AA' sao cho KM = \(\frac{\sqrt{59}}{2}\)

 

  bởi Mai Bảo Khánh 07/02/2017
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)


  • E là trung điểm AD', ta có \(E(0;\frac{7}{2};\frac{5}{2})\)
    F là trung điểm B'C, ta có \(F(1;\frac{3}{2};\frac{1}{2})\)
    \(\overrightarrow{EF}=(1;-2;-2)\)
    \(\overrightarrow{AB}=\overrightarrow{EF}\)
    \(\Leftrightarrow \left\{\begin{matrix} x_B+3=1\\ y_B-2=-2\\ z_B-1=-2 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_B=-2\\ y_B=0\\ z_B=-1 \end{matrix}\right.\Rightarrow B(-2;0;-1)\)

    \(\overrightarrow{A'B'}=\overrightarrow{EF}\)
    \(\Leftrightarrow \left\{\begin{matrix} -2-x_{A'}=1\\ 1-y_{A'}=-2\\ 1-z_{A'}=-2 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_{A'}=-3\\ y_{A'}=3\\ z_{A'}=3 \end{matrix}\right.\Rightarrow A'(-3;3;3)\)
    \(\overrightarrow{D'C'}=\overrightarrow{EF}\)
    \(\Leftrightarrow \left\{\begin{matrix} x_{C'}-3=1\\ y_{C'}-5=-2\\ z_{C'}-4=-2 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_{C'}=4\\ y_{C'}=3\\ z_{C'}=2 \end{matrix}\right.\Rightarrow C'(4;3;2)\)
    \(\overrightarrow{DC}=\overrightarrow{EF}\)
    \(\left\{\begin{matrix} 4-x_D=1\\ 2-y_D=-2\\ 0-z_D=-2 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_D=3\\ y_D=4\\ z_D=2 \end{matrix}\right.\Rightarrow D(3;4;2)\)
    K là tâm hình hộp nên K là trung điểm AC'
    Vậy \(K(\frac{1}{2};\frac{5}{2};\frac{3}{2})\)
    b)
    \(M(x;y;z)\in AA'\), ta có \(\overrightarrow{AA'}=(0;1;2)\)
    \(\overrightarrow{AM}=k.\overrightarrow{AA'}\)
    \(\left\{\begin{matrix} x+3=0\\ y-2=k\\ z-1=2k \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-3\\ y=2+k\\ z=1+2k \end{matrix}\right.\Rightarrow M(-3;2+k;1+2k)\)
    \(\overrightarrow{KM}=(-\frac{7}{2};k-\frac{1}{2};2k-\frac{1}{2})\)
    \(KM=\frac{\sqrt{59}}{2}\Leftrightarrow KM^2=\frac{59}{4}\)
    \(\Leftrightarrow \frac{49}{4}+(k-\frac{1}{2})^2+(2k-\frac{1}{2})^2=\frac{59}{4}\)
    \(\Leftrightarrow \frac{49}{4}+5k^2-3k+\frac{2}{4}=\frac{59}{4}\)
    \(\Leftrightarrow 5k^2-3k-2=0\)
    \(\Leftrightarrow \bigg \lbrack \begin{matrix} k=1\\ k=-\frac{2}{5} \end{matrix}\)
    k = 1 → M(-3;3;3)
    \(k=-\frac{2}{5}\rightarrow M(-3;\frac{8}{5};\frac{1}{5})\)

      bởi Đặng Ngọc Trâm 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF