OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Với lăng trụ \(ABC.A'B'C'\) có các mặt bên là hình vuông cạnh \(a\sqrt 2 \). Tính theo a thể tích V của khối lăng trụ ABC,A’B’C’.

A. \(V = \dfrac{{\sqrt 6 {a^3}}}{2}\)           B. \(V = \dfrac{{\sqrt 3 {a^3}}}{{12}}\)

C. \(V = \dfrac{{\sqrt 3 {a^3}}}{4}\)           D. \(V = \dfrac{{\sqrt 6 {a^3}}}{6}\)

  bởi Tran Chau 11/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Vì các mặt bên của lăng trụ là hình vuông nên ta có \(\left\{ \begin{array}{l}AA' \bot AB\\AA' \bot AC\end{array} \right. \Rightarrow AA' \bot \left( {ABCD} \right)\) và \(AA' = a\sqrt 2 \).

    Đồng thời \(AB = BC = CA = a\sqrt 2  \Rightarrow \Delta ABC\) là tam giác đều cạnh \(a\sqrt 2 \) \( \Rightarrow {S_{\Delta ABC}} = {\left( {a\sqrt 2 } \right)^2}.\dfrac{{\sqrt 3 }}{4} = \dfrac{{{a^2}\sqrt 3 }}{2}\).

    Vậy \({V_{ABC.A'B'C'}} = AA'.{S_{\Delta ABC}}\)\( = a\sqrt 2 .\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{{a^3}\sqrt 6 }}{2}\).

    Chọn A.

      bởi Spider man 11/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF