OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tứ diện đều \(ABCD\). Khi quay tứ diện đó xung quanh trục là \(AB\) có bao nhiêu hình nón khác nhau được tạo thành?

A. Một               

B. Hai  

C. Ba                 

D. Không có hình nón nào 

  bởi Nguyễn Thị Thanh 07/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi \(I\) là trung điểm của \(AB\).

    Dễ thấy \(DI,CI\) vuông góc \(AB\) và \(DI = CI\).

    Tam giác \(AID\) vuông tại \(I\) nên khi quay quanh \(AI\) ta được hình nón đỉnh \(A\), bán kính đáy \(IC\) và chiều cao \(AI\).

    Tam giác \(BIC\) vuông tại \(I\) nên khi quay quanh \(BI\) ta được hình nón đỉnh \(B\), bán kính đáy \(IC\) và chiều cao \(BI\).

    Rõ ràng \(IC = ID\) nên khi quay quanh \(AB\) thì các tam giác \(AID\) và \(BID\) cũng tạo thành hai hình nón như trên.

    Vậy có hai hình nón.

    Chọn B.

      bởi Bao Nhi 07/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF