OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong không gian tọa độ Oxyz cho bốn điểm A(-2; 1; 2), B(0; 4; 1), C(5;1;-5), D(-2; 8; -5) và đường thẳng \(d:{{x + 5} \over 3} = {{y + 11} \over 5} = {{z - 9} \over { - 4}}.\) Chứng minh A, B, C, D là bốn đỉnh của 1 tứ diện.

Trong không gian tọa độ Oxyz cho bốn điểm A(-2; 1; 2), B(0; 4; 1), C(5;1;-5), D(-2; 8; -5)  và đường thẳng \(d:{{x + 5} \over 3} = {{y + 11} \over 5} = {{z - 9} \over { - 4}}.\) Chứng minh A, B, C, D là bốn đỉnh của 1 tứ diện.

  bởi Nguyễn Thị An 24/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có \(\overrightarrow {AB}  = {\rm{ }}\left( {2{\rm{ }};{\rm{ }}3{\rm{ }};{\rm{ }} - 1} \right),\overrightarrow {AC}  = {\rm{ }}\left( {7{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ }} - 7} \right),\) suy ra

    \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\matrix{   3 & { - 1}  \cr   0 & { - 7}  \cr  } } \right|;\left| {\matrix{   { - 1} & 2  \cr   { - 7} & 7  \cr  } } \right|;\left| {\matrix{   2 & 3  \cr   7 & 0  \cr  } } \right|} \right) \)

    \(= ( - 21;7; - 21).\)

    Lại có \(\overrightarrow {AD}  = {\rm{ }}\left( {0{\rm{ }};{\rm{ }}7{\rm{ }};{\rm{ }} - 7} \right)\) nên \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD}  = {\rm{ }}49{\rm{ }} + {\rm{ }}147 \ne 0\)

    Do đó A, B, C, D là các đỉnh của một tứ diện.

      bởi Mai Vi 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF