OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong không gian Oxyz, cho phương trình đường thẳng đi qua điểm \(A\left( {3;1; - 1} \right)\) và vuông góc với mặt phẳng \(\left( P \right):\,\,2x - y + 2z - 5 = 0\)

A. \(\dfrac{{x + 3}}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z - 1}}{2}\)

B. \(\dfrac{{x - 2}}{3} = \dfrac{{y + 1}}{1} = \dfrac{{z - 2}}{{ - 1}}\)

C. \(\dfrac{{x - 3}}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z + 1}}{2}\)

D. \(\dfrac{{x - 3}}{2} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{{z + 1}}{2}\)

  bởi Nguyễn Hoài Thương 09/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Mặt phẳng \(\left( P \right):2x - y + 2z - 5 = 0\) có 1 VTPT là \(\overrightarrow {{n_P}}  = \left( {2; - 1;2} \right)\).

    Gọi \(\overrightarrow {{u_d}} \) là 1 VTCP của đường thẳng d. Vì \(d \bot \left( P \right) \Rightarrow \overrightarrow {{u_d}}  = \overrightarrow {{n_P}}  = \left( {2; - 1;2} \right)\).

    Vậy phương trình đường thẳng d đi qua \(A\left( {3;1; - 1} \right)\) và có 1 VTCP \(\overrightarrow {{u_d}}  = \left( {2; - 1;2} \right)\) là: \(\dfrac{{x - 3}}{2} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{{z + 1}}{2}.\)

    Chọn D.

      bởi Minh Thắng 09/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF