OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong không gian \(Oxyz\) cho \(A\left( {1; - 1;2} \right)\), \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 3\end{array} \right.\), \(C\left( {0;1; - 2} \right)\). Gọi \(M\left( {a;b;c} \right)\) là điểm thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho biểu thức \(S = \overrightarrow {MA} .\overrightarrow {MB} + 2\overrightarrow {MB} .\overrightarrow {MC} + 3\overrightarrow {MC} .\overrightarrow {MA} \) đạt giá trị nhỏ nhất. Khi đó \(T = 12a + 12b + c\) có giá trị là

  bởi Đào Lê Hương Quỳnh 16/05/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(S = \overrightarrow {MA} .\overrightarrow {MB}  + 2\overrightarrow {MB} .\overrightarrow {MC}  + 3\overrightarrow {MC} .\overrightarrow {MA} \)

    \( = \dfrac{1}{2}\left[ {M{A^2} + M{B^2} - {{\left( {\overrightarrow {MA}  - \overrightarrow {MB} } \right)}^2} + 2M{B^2} + 2M{C^2} - 2{{\left( {\overrightarrow {MB}  - \overrightarrow {MC} } \right)}^2} + 3M{A^2} + 3M{C^2} - 3{{\left( {\overrightarrow {MA}  - \overrightarrow {MC} } \right)}^2}} \right]\)

    \( = \dfrac{1}{2}\left[ {4M{A^2} + 3M{B^2} + 5M{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\)

    Xác định tọa độ điểm \(I\left( {m;n;p} \right)\) sao cho

    \(4\overrightarrow {IA}  + 3\overrightarrow {IB}  + 5\overrightarrow {IC}  = \overrightarrow 0  \Leftrightarrow \left\{ \begin{array}{l}4\left( {1 - m} \right) + 3\left( { - 2 - m} \right) + 5\left( {0 - m} \right) = 0\\4\left( { - 1 - n} \right) + 3\left( {0 - n} \right) + 5\left( {1 - n} \right) = 0\\4\left( {2 - p} \right) + 3\left( {3 - p} \right) + 5\left( { - 2 - p} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m =  - \dfrac{1}{6}\\n = \dfrac{1}{{12}}\\p = \dfrac{7}{{12}}\end{array} \right.\,\,\,\,\,\,\, \Rightarrow I\left( { - \dfrac{1}{6};\dfrac{1}{{12}};\dfrac{7}{{12}}} \right)\)

    Khi đó:

    \(\begin{array}{l}S = \dfrac{1}{2}\left[ {4M{A^2} + 3M{B^2} + 5M{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {4{{\left( {\overrightarrow {MI}  + \overrightarrow {IA} } \right)}^2} + 3{{\left( {\overrightarrow {MI}  + \overrightarrow {IB} } \right)}^2} + 5{{\left( {\overrightarrow {MI}  + \overrightarrow {IC} } \right)}^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {12M{I^2} + 2\overrightarrow {MI} .\left( {4\overrightarrow {IA}  + 3\overrightarrow {IB}  + 5\overrightarrow {IC} } \right) + 4I{A^2} + 3I{B^2} + 5I{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {12M{I^2} + 4I{A^2} + 3I{B^2} + 5I{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\,\,\left( {do\,\,4\overrightarrow {IA}  + 3\overrightarrow {IB}  + 5\overrightarrow {IC}  = \overrightarrow 0 } \right)\end{array}\)

    \( \Rightarrow S\) đạt giá trị nhỏ nhất khi và chỉ khi \(MI\) ngắn nhất \( \Leftrightarrow M\) là hình chiếu của I lên (Oxy)

    \( \Leftrightarrow M\left( { - \dfrac{1}{6};\dfrac{1}{{12}};0} \right)\,\,\, \Rightarrow \left\{ \begin{array}{l}a =  - \dfrac{1}{6}\\b = \dfrac{1}{{12}}\\c = 0\end{array} \right.\)\( \Rightarrow T = 12a + 12b + c = 12.\dfrac{{ - 1}}{6} + 12.\dfrac{1}{{12}} + 0 =  - 1\).

      bởi Mai Linh 16/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF