OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong hệ toạ độ \(Oxyz\), cho bốn điểm \(A( 1 ; 0 ; 0 ), B( 0 ; 1 ; 0 ), C( 0 ; 0 ; 1 ), D( -2 ; 1 ; -1)\). Tính độ dài đường cao của hình chóp \(A.BCD\).

Trong hệ toạ độ \(Oxyz\), cho bốn điểm \(A( 1 ; 0 ; 0 ), B( 0 ; 1 ; 0 ), C( 0 ; 0 ; 1 ), D( -2 ; 1 ; -1)\). Tính độ dài đường cao của hình chóp \(A.BCD\).

  bởi Anh Hà 06/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có \(\displaystyle \overrightarrow {BC}  = (0; - 1;1),\) \(\displaystyle \overrightarrow {BD}  = ( - 2;0; - 1)\)

    Gọi \(\displaystyle \overrightarrow n \) là vectơ pháp tuyến của \(\displaystyle (BCD)\) thì: 

    \(\displaystyle \overrightarrow n_{(BCD)}  = \left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] \) \(\displaystyle = (1; -2; -2)\)

    Phương trình mặt phẳng \(\displaystyle (BCD)\):

    \(\displaystyle 1(x - 0) - 2(y - 1) - 2( z - 0) = 0\)

    \(\displaystyle \Leftrightarrow  x - 2y - 2z + 2 = 0\)

    Chiều cao của hình chóp \(\displaystyle A.BCD\) bằng khoảng cách từ điểm \(\displaystyle A\) đến mặt phẳng \(\displaystyle (BCD)\):

    \(\displaystyle h = d(A,(BCD)) = {{\left| {1 + 2} \right|} \over {\sqrt {{1^2} + {(-2)^2} + {{( - 2)}^2}} }}\) \(\displaystyle = {3 \over 3} = 1\)

      bởi minh vương 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF