OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong hệ toạ độ \(Oxyz\), cho bốn điểm \(A( 1 ; 0 ; 0 ), B( 0 ; 1 ; 0 ), C( 0 ; 0 ; 1 ), D( -2 ; 1 ; -1)\). Chứng minh \(A, B, C, D\) là bốn đỉnh của một tứ diện.

Trong hệ toạ độ \(Oxyz\), cho bốn điểm \(A( 1 ; 0 ; 0 ), B( 0 ; 1 ; 0 ), C( 0 ; 0 ; 1 ), D( -2 ; 1 ; -1)\). Chứng minh \(A, B, C, D\) là bốn đỉnh của một tứ diện.

  bởi can chu 07/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Viết phương trình mặt phẳng \((ABC)\): Theo phương trình mặt phẳng theo đoạn chắn, ta có:

    \((ABC)\): \({x \over 1} + {y \over 1} + {z \over 1} = 1 \) \(\Leftrightarrow x + y + z - 1 = 0\)

    Thế các toạ độ của \(D\) vào vế phải của phương trình mặt phẳng \((ABC)\), ta có: \(-2 + 1 - 1 - 1 = -3 ≠ 0\)

    Vậy \(D ∉ (ABC)\) hay bốn điểm \(A, B, C, D\) không đồng phẳng, suy ra A, B, C, D là bốn đỉnh của 1 tứ diện.

      bởi Truc Ly 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF