OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Toán hình học 12

Một thể tích khối nón tròn xoay biết khoảng cách từ tâm của đáy đến đường sinh bằng ​​căn 3 và thiết diện qua trục là một tam giác đều

  bởi Trần Thị Hiếu 12/05/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi độ dài cạnh tam giác đề ABC là a.

    Do ABC là tam giác đều nên \(AO = \frac{{a\sqrt 3 }}{2}\); \(OB = \frac{a}{2}.\)

    Xét tam giác vuông AOB ta có: \(\frac{1}{{O{H^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{A^2}}} \Rightarrow \frac{1}{3} = \frac{4}{{3{a^2}}} + \frac{4}{{{a^2}}} = \frac{{16}}{{3{a^2}}} \Rightarrow a = 4.\)

    Vậy khối nón có bán kính đáy \(R = AO = 2\sqrt 2 ;\) chiều cao \(h = OB = 2\) nên có thể tích là:

    \(V = \frac{1}{3}\pi {R^2}h = \frac{{16}}{3}\pi .\)

      bởi cuc trang 20/07/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF