OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{2{x^2} - x + 2}}{{{x^2} - 5}}\) là bằng bao nhiêu?

A. \(x = 2\)                           

B. \(x =  \pm \sqrt 5 \)  

C. \(x =  \pm 1\)                       

D. \(x = 3\)  

  bởi Lê Nguyễn Hạ Anh 02/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có: \(\mathop {\lim }\limits_{x \to {{\left( {\sqrt 5 } \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( {\sqrt 5 } \right)}^ + }} \dfrac{{2{x^2} - x + 2}}{{{x^2} - 5}} =  + \infty \) nên \(x = \sqrt 5 \) là đường tiệm cận đứng.

    \(\mathop {\lim }\limits_{x \to {{\left( { - \sqrt 5 } \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - \sqrt 5 } \right)}^ + }} \dfrac{{2{x^2} - x + 2}}{{{x^2} - 5}} =  - \infty \) nên \(x =  - \sqrt 5 \) là đường tiệm cận đứng.

    Vậy đồ thị hàm số có tiệm cận đứng là các đường thẳng \(x =  \pm \sqrt 5 \).

    Chọn B.

      bởi Ngoc Han 03/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF