OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Một hình trụ có bán kính \(r\) và chiều cao \(h = r\sqrt3\). Cho hai điểm \(A\) và \(B\) lần lượt nằm trên hai đường tròn đáy sao cho góc giữa đường thẳng \(AB\) và trục của hình trụ bằng \(30^0\). Tính khoảng cách giữa đường thẳng \(AB\) và trục của hình trụ.

Một hình trụ có bán kính \(r\) và chiều cao \(h = r\sqrt3\). Cho hai điểm \(A\) và \(B\) lần lượt nằm trên hai đường tròn đáy sao cho góc giữa đường thẳng \(AB\) và trục của hình trụ bằng \(30^0\). Tính khoảng cách giữa đường thẳng \(AB\) và trục của hình trụ. 

  bởi Nguyễn Hồng Tiến 05/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Giả sử trục của hình trụ là \(O_1O_2\) và \(A\) nằm trên đường tròn tâm \(O_1\), \(B\) nằm trên đường tròn tâm \(O_2\); \(I\) là trung điểm của \(O_1O_2\) , \(J\) là trung điểm của \(AB\).

    Ta chứng minh \(IJ\) là đường vuông góc chung của \(O_1O_2\)  và \(AB\).

    Hạ \(BB_1\) vuông góc với đáy, \(J_1\) là hình chiếu vuông góc của \(J\) xuống đáy.

    Dễ thấy \(J_1\) là trung điểm của \(AB_1\) (định lí đường trung bình của tam giác).

    Ta có: \(\left\{ \begin{array}{l}{O_1}{J_1} \bot A{B_1}\\{O_1}{J_1} \bot B{B_1}\end{array} \right. \Rightarrow {O_1}{J_1} \bot \left( {AB{B_1}} \right)\).

    Mà \(IJ//{O_1}{J_1} \Rightarrow IJ \bot \left( {AB{B_1}} \right)\) \( \Rightarrow IJ \bot AB\).

    \(\left\{ \begin{array}{l}IJ//{O_1}{J_1}\\{O_1}{O_2} \bot {O_1}{J_1}\end{array} \right. \Rightarrow IJ \bot {O_1}{O_2}\).

    Vậy IJ là đường vuông góc chung của \(O_1O_2\)  và \(AB\) \( \Rightarrow d\left( {AB;{O_1}{O_2}} \right) = IJ\)

    Ta có: \(BB_1\) // \({O_1}{O_2}\) \( \Rightarrow \widehat {\left( {AB;{O_1}{O_2}} \right)} = \widehat {\left( {AB;B{B_1}} \right)} = \widehat {AB{B_1}}\).

    do vậy: \(AB_1 = BB_1.tan 30^0\) = \( \frac{\sqrt{3}}{3}h = r\).

    Xét tam giác vuông \(O_1J_1A\) vuông tại \(J_1\) ta có: 

    \( O_{1}J^{2}_{1}\) = \( O_{1}A^{2}\) - \( AJ^{2}_{1} =\) \( r^{2} - {\left( {{r \over 2}} \right)^2}=\) \( \frac{3}{4}r^{2}\) \( \Rightarrow {O_1}{J_1} = \frac{{r\sqrt 3 }}{2}\)

    Vậy khoảng cách giữa \(AB\) và \(O_1O_2\) là: \( \frac{\sqrt{3}}{2}r\).

      bởi hà trang 06/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF