OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Hãy tính thể tích của vật thể nằm giữa hai mặt phẳng \(x=0\) và \(x=2\), biết rằng thiết diện của vật thể bị cắt bơi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(\left( {0 \le x \le 2} \right)\) là một nửa hình tròn đường kính \(\sqrt 5 {x^2}\).

Hãy tính thể tích của vật thể nằm giữa hai mặt phẳng \(x=0\) và \(x=2\), biết rằng thiết diện của vật thể bị cắt bơi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(\left( {0 \le x \le 2} \right)\) là một nửa hình tròn đường kính \(\sqrt 5 {x^2}\).

  bởi thu hằng 07/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Diện tích của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(x\) là:

    \(S\left( x \right) = {1 \over 2}\pi {\left( {{{\sqrt 5 } \over 2}{x^2}} \right)^2}\) \( = {1 \over 2}.{{5\pi } \over 4}{x^4} = {{5\pi } \over 8}{x^4}\)

    Vậy thể tích của vật thể là :

    \(V = \int\limits_0^2 {S\left( x \right)dx = {{5\pi } \over 8}} \int\limits_0^2 {{x^4}dx}  \) \(= \left. {{{5\pi } \over 8}.{{{x^5}} \over 5}} \right|_0^2 = 4\pi .\)

      bởi Mai Đào 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF