OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giải phương trình \(\frac{x^2+2x-8}{x^2-2x+3}=(x+1)(\sqrt{x+2}-2)\) trên tập só thực.

Giải phương trình  \(\frac{x^2+2x-8}{x^2-2x+3}=(x+1)(\sqrt{x+2}-2)\) trên tập só thực.

  bởi can tu 06/02/2017
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Điều kiện \(x\geq -2\). Phương trình cho tương ứng với
    \(\frac{(x-2)(x-4)}{x^2-2x+3}=\frac{(x+1)(x-2)}{\sqrt{x+2}+2}\Leftrightarrow \bigg \lbrack \begin{matrix} x=2\\ \frac{x+4}{x^2-2x+3}=\frac{x+1}{\sqrt{x+2}-2} \end{matrix}\) (1)
     

    Ta có (1) \(\Leftrightarrow (x+4)(\sqrt{x+2}+2)=(x+1)(x^2-2x+3)\)
    \(\Leftrightarrow (\sqrt{x+2}+2)\left [ (\sqrt{x+2})^2+2\right ]=\left [ (x-1) +2\right ]\left [ (x-1)^2+2 \right ]\) (2)

    Xét hàm số \(f(x)=(t+2)(t^2+2).\)

    Ta có \(f'(t)=3t^2+4t+2\) suy ra \(f'(t)> 0, \forall t\epsilon R\), nên f(t) đồng biến trên R.
    Do đó (2) \(\Leftrightarrow f(\sqrt{x+2})=f(x+1)\Leftrightarrow \sqrt{x+2}=x-1\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x^2-3x-1=0 \end{matrix}\right.\)

    \(\Leftrightarrow x=\frac{3+\sqrt{13}}{2}\)
    Đối chiếu điều kiện, ta được nghiệm của phương trình đã cho là x = 2; \(x=\frac{3+\sqrt{13}}{2}\)

      bởi Dương Minh Tuấn 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF