OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hình lăng trụ \(ABC.\,A'B'C'\) có thể tích bằng \(V\). Gọi \(M\) là trung điểm cạnh \(BB'\), điểm \(N\) thuộc cạnh \(CC'\) sao cho \(CN = 2C'N\). Hãy tính thể tích khối chóp \(A.\,BCNM\) theo \(V\).

A \({V_{A.BCNM}} = \dfrac{{7V}}{{12}}\).

B \({V_{A.BCNM}} = \dfrac{{7V}}{{18}}\).

C \({V_{A.BCNM}} = \dfrac{V}{3}\).

D \({V_{A.BCNM}} = \dfrac{{5V}}{{18}}\).

  bởi Nguyen Phuc 07/07/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có

    \(\begin{array}{l}{S_{BCC'B'}} = d\left( {B;CC'} \right).CC'\\{S_{BMNC}} = \dfrac{{\left( {BM + CN} \right)d\left( {B;CC'} \right)}}{2}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}d\left( {B;CC'} \right)\left( {\dfrac{1}{2}CC' + \dfrac{2}{3}CC'} \right) = \dfrac{7}{{12}}d\left( {B;CC'} \right).CC'\end{array}\)

    \( \Rightarrow \dfrac{{{S_{BMNC}}}}{{{S_{BCC'B'}}}} = \dfrac{7}{{12}} \Rightarrow \dfrac{{{V_{A.BMNC}}}}{{{V_{A.BCC'B'}}}} = \dfrac{7}{{12}} \Rightarrow {V_{A.BMNC}} = \dfrac{7}{{12}}{V_{A.BCC'B'}}\).

    Mà \({V_{A.BCC'B'}} = \dfrac{2}{3}V \Rightarrow {V_{A.BMNC}} = \dfrac{7}{{12}}.\dfrac{2}{3}V = \dfrac{7}{{18}}V\).

    Chọn B.

      bởi hồng trang 08/07/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF