OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Tam giác \(SAB\) vuông cân tại \(S\) và \(\left( {SAB} \right)\) vuông góc với mặt phẳng đáy. Tính theo \(a\) thể tích của khối tứ diện .

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Tam giác \(SAB\) vuông cân tại \(S\) và \(\left( {SAB} \right)\) vuông góc với mặt phẳng đáy. Tính theo \(a\) thể tích của khối tứ diện . 

  bởi thùy trang 08/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi \(H\) là trung điểm \(AB\). Suy ra \(SH \bot \left( {ABCD} \right)\).

    Ta giác \(SAB\) vuông cân tại \(S\), \(AB = a\), \(SH\) là đường cao vừa là trung tuyến nên \(SH = \dfrac{1}{2}AB = \dfrac{1}{2}a.\)

    Vậy \({V_{SACD}} = \dfrac{1}{3}{S_{ACD}}.SH\)\( = \dfrac{1}{3}.\dfrac{1}{2}{a^2}.\dfrac{1}{2}a = \dfrac{{{a^3}}}{{12}}\)

      bởi Nguyễn Lê Tín 08/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF