OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right)\), SC tạo với đáy một góc \({45^0}\) . Hãy tính khoảng cách từ A đến mặt phẳng (SBD).

A. \(\dfrac{{a\sqrt {10} }}{5}\)           

B. \(\dfrac{{a\sqrt {10} }}{2}\)

C. \(\dfrac{{a\sqrt 5 }}{5}\)            

D. \(\dfrac{{a\sqrt 2 }}{5}\)

  bởi Nguyễn Lê Tín 07/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  •  

    AC là hình chiếu của SC trên (ABCD) \( \Rightarrow \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC;AC} \right)} = \widehat {SCA} = {45^0} \Rightarrow \Delta SAC\)vuông cân tại A \( \Rightarrow SA = AC = AB\sqrt 2  = a\sqrt 2 \)

    Gọi \(O = AC \cap BD\). trong mặt phẳng (SAC) kẻ \(AH \bot SO\)

    Ta có \(\left\{ {\begin{array}{*{20}{l}}{BD \bot SA}\\{BD \bot AC}\end{array}} \right. \Rightarrow BD \bot \left( {SAC} \right) \Rightarrow BD \bot AH\)

    \(\left\{ {\begin{array}{*{20}{l}}{AH \bot BD}\\{AH \bot SO}\end{array}} \right. \Rightarrow AH \bot \left( {SBD} \right) \Rightarrow d\left( {A;\left( {SBD} \right)} \right) = AH\)

    Ta có \(\dfrac{1}{{A{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{O^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{D^2}}} = \dfrac{1}{{2{a^2}}} + \dfrac{1}{{{a^2}}} + \dfrac{1}{{{a^2}}} = \dfrac{5}{{2{a^2}}} \Rightarrow AH = \dfrac{{a\sqrt {10} }}{5}\)

    Chọn A.

      bởi Nguyễn Vân 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF