OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho đường tròn \((T):{(x - 1)^2} + {(y + 2)^2} = 5\) và hai điểm A(3; -1), B(6; -2). Hãy viết phương trình đường thẳng cắt (T) tại hai điểm C, D sao cho ABCD là hình bình hành.

  bởi Trinh Hung 08/05/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Đường tròn \(\left( T \right)\) có tâm \(I\left( {1; - 2} \right)\) và bán kính \(R = \sqrt 5 .\)

    \(\overrightarrow {AB}  = \left( {3; - 1} \right) \Rightarrow AB = \sqrt {{3^2} + 1}  = \sqrt {10} .\)

    \(ABCD\) là hình bình hành \( \Rightarrow AB//CD \Rightarrow CD\)  nhận \(\overrightarrow {AB} \) làm VTCP \( \Rightarrow CD\) nhận vecto \(\left( {1;\;3} \right)\) làm VTPT

    \(CD:\;\;x + 3y + c = 0.\) 

    Phương trình đường thẳng \(d\) đi qua \(I\left( {1; - 2} \right)\) và vuông góc với \(AB\) là:

    \(3\left( {x - 1} \right) - \left( {y + 2} \right) = 0 \Leftrightarrow 3x - y - 1 = 0.\)

    Ta có: \(d\left( {I;\;CD} \right) = \sqrt {{R^2} - {{\left( {\dfrac{{CD}}{2}} \right)}^2}}  = \sqrt {{R^2} - \dfrac{{A{B^2}}}{4}} \)

    \(\begin{array}{l} \Leftrightarrow \dfrac{{\left| {1 + 3.\left( { - 2} \right) + c} \right|}}{{\sqrt {1 + {3^2}} }} = \sqrt {5 - \dfrac{{10}}{4}}  \Leftrightarrow \left| { - 5 + c} \right| = 5\\ \Leftrightarrow \left[ \begin{array}{l} - 5 + c = 5\\ - 5 + c =  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}c = 10\\c = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}CD:\;\;x + 3y + 10 = 0\\CD:\;\;x + 3y = 0\end{array} \right..\end{array}\)

      bởi Nhi Nhi 09/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF