OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Ba đoạn thẳng SA, SB, SC đôi một vuông góc với nhau tạo thành một tứ diện SABC với: SA=a, SB=b, SC=c. Bán kính mặt cầu ngoại tiếp tứ diện đó là bằng?

\(A.\,r = \sqrt {{a^2} + {b^2} + {c^2}} \)

\(B.\,r = 2\sqrt {{a^2} + {b^2} + {c^2}} \)

\(C.\,r = 2a\)

\(D.\,r = \dfrac{{\sqrt {{a^2} + {b^2} + {c^2}} }}{2}\)

  bởi Song Thu 06/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi I là trung điểm của AB.

    Kẻ Δ vuông góc với mặt phẳng (SAB) tại I.

    Dựng mặt phẳng trung trực của SC cắt Δ tại O.

    Suy ra: \(OC = OS\) (1)

    I là tâm mặt cầu ngoại tiếp tam giác SAB vì SAB vuông tại S. 

    Suy ra \(OA = OB = OS\) (2)

    Từ (1);(2) suy ra \(OA = OB = OC = OS.\)

    Vậy A, B, C, S thuộc mặt cầu tâm O bán kính OA.

    \(r = OA = \sqrt {O{I^2} + A{I^2}} \)\(\, = \sqrt {{{\left( {\dfrac{{SC}}{2}} \right)}^2} + {{\left( {\dfrac{{AB}}{2}} \right)}^2}}  \)\(\,= \dfrac{1}{2}\sqrt {{a^2} + {b^2} + {c^2}} \)

    Chọn D.

      bởi bala bala 06/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF