OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 43 trang 12 SBT Toán 9 Tập 1

Giải bài 43 tr 12 sách BT Toán lớp 9 Tập 1

Tìm x thỏa mãn điều kiện

a) \(\sqrt {{{2x - 3} \over {x - 1}}}  = 2\)

b) \({{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2\)

c) \(\sqrt {{{4x + 3} \over {x + 1}}}  = 3\)

d) \({{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3.\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

a. Áp dụng với \({\rm{A}} \ge {\rm{0; B}} \ge {\rm{0}}\) thì \(\sqrt A  = B \Leftrightarrow A = {B^2}\)

Để \(\sqrt {\dfrac{A}{B}} \) có nghĩa ta xét các trường hợp: 

Trường hợp 1: 

\(\left\{ \begin{array}{l} 
A \ge 0\\
B > 0
\end{array} \right.\)

Trường hợp 2:

\(\left\{ \begin{array}{l}
A \le 0\\
B < 0
\end{array} \right.\) 

b. Áp dụng với \({\rm{A}} \ge {\rm{0; B}} \ge {\rm{0}}\) thì \(\sqrt A  = B \Leftrightarrow A = {B^2}\)

Để \(\dfrac{{\sqrt A }}{{\sqrt B }}\) có nghĩa thì \(A \ge 0;B > 0\).

c. Áp dụng với \({\rm{A}} \ge {\rm{0; B}} \ge {\rm{0}}\) thì \(\sqrt A  = B \Leftrightarrow A = {B^2}\)

Để \(\sqrt {\dfrac{A}{B}} \) có nghĩa ta xét các trường hợp: 

Trường hợp 1: 

\(\left\{ \begin{array}{l} 
A \ge 0\\
B > 0
\end{array} \right.\)

Trường hợp 2:

\(\left\{ \begin{array}{l}
A \le 0\\
B < 0
\end{array} \right.\)

d. Áp dụng với \({\rm{A}} \ge {\rm{0; B}} \ge {\rm{0}}\) thì \(\sqrt A  = B \Leftrightarrow A = {B^2}\)

Để \(\dfrac{{\sqrt A }}{{\sqrt B }}\) có nghĩa thì \(A \ge 0;B > 0\).

Lời giải chi tiết

a) Ta có:

\(\sqrt {{{2x - 3} \over {x - 1}}} \)  xác định khi và chỉ khi  \({{2x - 3} \over {x - 1}} \ge 0\)

Trường hợp 1:  

\(\eqalign{
& \left\{ \matrix{
2x - 3 \ge 0 \hfill \cr 
x - 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge 3 \hfill \cr 
x > 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge 1,5 \hfill \cr 
x > 1 \hfill \cr} \right. \Leftrightarrow x \ge 1,5 \cr} \)

Trường hợp 2: 

\(\eqalign{
& \left\{ \matrix{
2x - 3 \le 0 \hfill \cr 
x - 1 < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \le 3 \hfill \cr 
x < 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \le 1,5 \hfill \cr 
x < 1 \hfill \cr} \right. \Leftrightarrow x < 1 \cr} \)

Với x ≥ 1,5 hoặc x < 1 ta có:

\(\eqalign{
& \sqrt {{{2x - 3} \over {x - 1}}} = 2 \Leftrightarrow {{2x - 3} \over {x - 1}} = 4 \cr 
& \Leftrightarrow 2x - 3 = 4(x - 1) \cr} \)

\(\eqalign{
& \Leftrightarrow 2x - 3 = 4x - 4 \cr 
& \Leftrightarrow 2x = 1 \Leftrightarrow x = 0,5 \cr} \)

Giá trị x = 0,5 thỏa mãn điều kiện x < 1.

b) Ta có: \({{\sqrt {2x - 3} } \over {\sqrt {x - 1} }}\) xác định khi và chỉ khi:

\(\eqalign{
& \left\{ \matrix{
2x - 3 \ge 0 \hfill \cr 
x - 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge 3 \hfill \cr 
x > 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge 1,5 \hfill \cr 
x > 1 \hfill \cr} \right. \Leftrightarrow x \ge 1,5 \cr} \)

Với x ≥ 1,5 ta có: 

\(\eqalign{
& {{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2 \Leftrightarrow {{2x - 3} \over {x - 1}} = 4 \cr 
& \Leftrightarrow 2x - 3 = 4(x - 1) \cr} \)

\(\eqalign{
& \Leftrightarrow 2x - 3 = 4x - 4 \cr 
& \Leftrightarrow 2x = 1 \Leftrightarrow x = 0,5 \cr} \)

Giá trị x = 0,5 không thỏa mãn điều kiện.

Vậy không có giá trị nào của x để  \({{\sqrt {2x - 3} } \over {\sqrt {x - 1} }} = 2\)

c) Ta có: \(\sqrt {{{4x + 3} \over {x + 1}}} \) xác định khi và chỉ khi \({{4x + 3} \over {x + 1}} \ge 0\)

Trường hợp 1:  

\(\eqalign{
& \left\{ \matrix{
4x + 3 \ge 0 \hfill \cr 
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \ge - 3 \hfill \cr 
x > - 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge - 0,75 \hfill \cr 
x > - 1 \hfill \cr} \right. \Leftrightarrow x \ge - 0,75 \cr} \)

Trường hợp 2:  

\(\eqalign{
& \left\{ \matrix{
4x + 3 \le 0 \hfill \cr 
x + 1 < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \le - 3 \hfill \cr 
x < - 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge - 0,75 \hfill \cr 
x < - 1 \hfill \cr} \right. \Leftrightarrow x < - 1 \cr} \)

Với x ≥ -0,75 hoặc x < -1 ta có:

\(\eqalign{
& \sqrt {{{4x + 3} \over {x + 1}}} = 3 \Leftrightarrow {{4x + 3} \over {x + 1}} = 9 \cr 
& \Leftrightarrow 4x + 3 = 9(x + 1) \cr} \)

\(\eqalign{
& \Leftrightarrow 4x + 3 = 9x + 9 \cr 
& \Leftrightarrow 5x = - 6 \Leftrightarrow x = - 1,2 \cr} \)

Giá trị x = -1,2 thỏa mãn điều kiện x < -1.

d) Ta có : \({{\sqrt {4x + 3} } \over {\sqrt {x + 1} }}\) xác định khi và chỉ khi:

\(\eqalign{
& \left\{ \matrix{
4x + 3 \ge 0 \hfill \cr 
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \ge - 3 \hfill \cr 
x > - 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge - 0,75 \hfill \cr 
x > - 1 \hfill \cr} \right. \Leftrightarrow x \ge - 0,75 \cr} \)

Với x ≥ -0,75 ta có: 

\(\eqalign{
& {{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3 \Leftrightarrow {{4x + 3} \over {x + 1}} = 9 \cr 
& \Leftrightarrow 4x + 3 = 9(x + 1) \cr} \)

\(\eqalign{
& \Leftrightarrow 4x + 3 = 9x + 9 \cr 
& \Leftrightarrow 5x = - 6 \Leftrightarrow x = - 1,2 \cr} \)

Vậy không có giá trị nào của x để \({{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3.\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 43 trang 12 SBT Toán 9 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • nguyen bao anh

    tìm x biết :

    \(\sqrt{x-4}=a\left(a\in R\right)\)

    Theo dõi (0) 1 Trả lời
  • Quế Anh

    chứng minh :

    \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\)

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Nguyễn Sơn Ca

    cho x,y,z >0 tính:

    \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)

    Theo dõi (0) 1 Trả lời
  • Thùy Nguyễn

    tính

    1\(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)

    2\(\left(2\sqrt{3}-3\right):5\sqrt{3}\)

    3\(\left(2\sqrt{18}-3\sqrt{8}+6\right):\sqrt{2}\)

    4\(\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{15}\)

    5\(\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}\)

    Theo dõi (0) 1 Trả lời
  • ADMICRO
    bach hao

    Tính:

    a) \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)

    b) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)

    Mọi người giúp em với!!!!!!!!!!!!

    Theo dõi (0) 1 Trả lời
  • Phan Thiện Hải

    Akai Haruma

    Tính tổng các chữ số của A biết \(\sqrt{A}=99....96\) ( 100 chữ số 9 )

    Theo dõi (0) 1 Trả lời
  • Nguyễn Thị Lưu

    rút gọn biểu thức \(\sqrt{5-\sqrt{13+\sqrt{48}}}\)

    Theo dõi (0) 1 Trả lời
  • Choco Choco

    Tìm GTLN của

    a) A = \(\sqrt{x^{2^{ }}-2x+5}\)

    b) B = \(\sqrt{\dfrac{x^2}{4}-\dfrac{x}{6}+1}\)

    c) C = \(\sqrt{x^{2^{ }}+2x+1}+\sqrt{x^{2^{ }}-6x+9}\)

    Theo dõi (0) 1 Trả lời
  • cuc trang

    2x mũ 2+3x+6

    Theo dõi (0) 1 Trả lời
  • Trần Hoàng Mai

    \(\dfrac{\sqrt{xy^3}.\sqrt{x^2-y^2}}{\sqrt{\left(x+y\right)\left(x^2y^3-xy^4\right)}}\)

    Theo dõi (0) 1 Trả lời
  • khanh nguyen

    x^2+3x+6

    Theo dõi (0) 1 Trả lời
  • Nguyễn Sơn Ca

    \(\sqrt[]{\dfrac{1}{125}}.\sqrt[]{\dfrac{32}{35}}:\sqrt[]{\dfrac{56}{225}}\)

    Theo dõi (0) 1 Trả lời
NONE
OFF