Ôn tập Hình học 9 Chương 2 Đường tròn
Dưới đây là tài liệu Ôn tập Hình học 9 Chương 2 Đường tròn được biên soạn và tổng hợp đầy đủ, bám sát chương trình SGK. Tại đây, hoc247 tóm tắt lại những kiến thức quan trọng về hàm số bậc nhất và bài tập trọng tâm ở Chương 2. Bộ tài liệu cung cấp nội dung các bài học, hướng dẫn giải bài tập trong SGK, phần trắc nghiệm online có đáp án và hướng dẫn giải cụ thể, chi tiết nhằm giúp các em có thể tham khảo và so sánh với đáp án trả lời của mình. Bên cạnh đó các đề kiểm tra Chương 2 được tổng hợp và sưu tầm từ nhiều trường THCS khác nhau, các em có thể tải file về tham khảo cũng như làm bài thi trực tuyến trên hệ thống để được chấm điểm trực tiếp, từ đó đánh giá được năng lực của bản thân để có kế hoạch ôn tập hiệu quả. Hoc247 hi vọng đây là tài liệu hữu ích giúp các em thuận tiện trong việc ôn tập. Mời các em cùng tham khảo
Đề cương ôn tập Hình học 9 Chương 2
A. Kiến thức cần nhớ
1. Khái niệm về đường kính
Trong các dây của một đường tròn, dây lớn nhất là đường kính
Trong một đường tròn, đườngkính vuông góc với dây thì đi qua trung điểm của dây đó
Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.
2. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Định lý 1:
Trong một đường tròn
a) Hai dây bằng nhau thì cách đều tâm
b) Hai dây cách đều tâm thì bằng nhau
Định lý 2:
Trong một đường tròn
a) Dây nào lớn hơn thì dây đó gần tâm hơn
b) Dây nào gần tâm hơn thì dây đó lớn hơn
3. Ba vị trí tương đối của đường thẳng và đường tròn
a) Đường thẳng và đường tròn cắt nhau
Khi một đường thẳng a và đường tròn (O;R) có 2 điểm chung ta nói đường thẳng a và đường tròn (O; R) cắt nhau. Đường thẳng a gọi là cát tuyến của đường tròn (O; R)
Khi đó: Gọi H là hình chiếu vuông góc của O lên a thì OH là khoảng cách từ O đến a và OH
b) Đường thẳng và đường tròn tiếp xúc nhau
Khi đường thẳng a và đường tròn (O; R) có 1 điểm chung tại C ta nói đường thẳng a và đường tròn (O; R) tiếp xúc nhau
Ta còn nói đường thẳng a là tiếp tuyến của đường tròn. Điểm C gọi là tiếp điểm và OC chính là khoảng cách từ O đến a. Khi đó OH = R
Định lý:
Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm
c) Đường thẳng và đường tròn không giao nhau
Khi đường thẳng a và đường tròn (O) không có điểm chung nào thì ta nói đường thẳng a và đường tròn (O) không giao nhau
4. Hệ thức giữa khoảng cách từ tâm đường tròn tới đường thẳng và bán kính của đường tròn
Cho đường thẳng a và (O; R). Đặt OH = d là khoảng cách từ O đến đường thẳng a. Khi đó:
d < R <=> đường thẳng a cắt (O; R) tại hai điểm phân biệt
d = R <=> đường thẳng a có 1 điểm chung với (O; R) (hay đường thẳng a tiếp xúc với đường tròn (O; R))
d > R <=> đường thẳng a không có điểm chung với đường tròn (O; R)
5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Định lý:
Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn
6. Định lý về hai tiếp tuyến cắt nhau
Định lý:
Nếu hai tiếp tuyến của đường tròn cắt nhau tại 1 điểm thì:
- Điểm đó cách đều hai tiếp điểm
- Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến
- Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm
- Góc tạo bởi hai tiếp tuyến AB và AC là góc BAC
- Góc tạo bởi hai bán kính đi qua các tiếp điểm là BOC
7. Đường tròn nội tiếp tam giác
- Đường tròn tiếp xúc với 3 cạnh một tam giác gọi là đường nội tiếp tam giác, còn tam giác gọi là ngoại tiếp đường tròn
- Tâm của đường tròn nội tiếp tam giác là giao của các đường phân giác trong của tam giác đó.
8. Tính chất đường nội tâm
Định lý:
- Nếu hai đường tròn cắt nhau thì hai giao điểm đối xứng với nhau qua đường nối tâm, tức là đường nối tâm là đường trung trực của dây chung
- Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm
9. Hệ thức giữa đoạn nối tâm và các bán kính
Xét hai đường tròn (O; R) và (O'; r) trong đó \(R \ge r\)
a) Hai đường tròn cắt nhau
Nếu hai đường tròn (O; R) và (O'; r) cắt nhau thì R - r < OO' < R + r
b) Hai đường tròn tiếp xúc nhau
- Nếu (O) và (O') tiếp xúc ngoài thì: OO' = R + r
- Nếu (O) và (O') tiếp xúc trong thì: OO' = R - r
c) Hai đường tròn không giao nhau
- Nếu hai đường tròn (O) và (O') ở ngoài thì OO' > R -r
10. Tiếp tuyến chung của hai đường tròn
Tiếp tuyến chung của hai đường tròn là đường thẳng tiếp xúc với cả hai đường tròn đó
- Tiếp tuyến chung ngoài không cắt đoạn nội tâm
- Tiếp tuyến chung trong cắt đoạn nối tâm
- Nếu đường tròn (O) đựng đường tròn (O') thì OO' < R - r
- Nếu hai đường tròn (O) và (O') đồng tâm thì OO' = 0
B. Bài tập minh họa
Bài 1: Cho đường tròn (O;R) và 2 dây AB và CD bằng nhau và vuông góc với nhau tại I. Giả sử IA=4, IB=8. Khoảng cách từ tâm O tới AB là d và tới CD là d'
Giá trị của d và d'
Hướng dẫn:
Gọi E, F lần lượt là hình chiếu vuông góc của O lên CD, AB. Vì tứ giác OFIE có 3 góc vuông nên OFIE là hình chữ nhật
ta lại có OE=OF do AB=CD nên OFIE là hình vuông khi đó:
\(OE=OF=EI=FI=FA-IA=\frac{AB}{2}-IA=\frac{IA+IB}{2}-IA=2\)
Bài 2: Cho (O;10), dây AB=20. Vẽ dây CD song song với AB và có khoảng cách tới AB là 8. Độ dài dây CD là?
Hướng dẫn:
Vì đường kính của đường tròn là 20 nên AB đi qua tâm đường tròn.
Gọi E là trung điểm của CD \(\Rightarrow OE\perp AB\)
Trong tam giác OEC vuông tại E, ta có: \(CE=\sqrt{CO^2-OE^2}=6\)
\(CD=2CE=12\)
Bài 3: Cho đường tròn (O;3). Một điểm A cách O một khoảng là 8. Kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Độ dài AB là:
Hướng dẫn:
Dựa vào hình trên, ta thấy rằng:
Tam giác AOB vuông tại B
\(\Rightarrow AB=\sqrt{AO^2-OB^2}=\sqrt{55}\)
Bài 4: Cho đường tròn (O;4). Một điểm A cách O một khoảng là 12. Kẻ tiếp tuyến AB với (O) (B là tiếp điểm). OA cắt đường tròn tại C. Qua C dựng đường thẳng song song với OB, cắt AB tại D. Độ lớn của CD là?
Hướng dẫn:
Ta có: \(CD//OB\Rightarrow \frac{CD}{OB}=\frac{AC}{AO}\)\(\Rightarrow CD=\frac{AC.OB}{AO}=\frac{8.4}{12}=\frac{8}{3}\)
Bài 5: Cho tam giác ABC vuông tại A có AB=6, AC=8. Đường tròn (I;r) nội tiếp tam giác ABC. Giá trị của r là:
Hướng dẫn:
\(S_{ABC}=\frac{1}{2}.AB.AC=24=p.r\Rightarrow r=\frac{24}{\frac{1}{2}.(AB+AC+\sqrt{AB^2+AC^2})}=2\)
Trắc nghiệm Hình học 9 Chương 2
Đây là phần trắc nghiệm online theo từng bài học có đáp án và hướng dẫn giải chi tiết.
- Trắc nghiệm Toán 9 Chương 2 Bài 1
- Trắc nghiệm Toán 9 Chương 2 Bài 2
- Trắc nghiệm Toán 9 Chương 2 Bài 3
- Trắc nghiệm Toán 9 Chương 2 Bài 4
- Trắc nghiệm Toán 9 Chương 2 Bài 5
- Trắc nghiệm Toán 9 Chương 2 Bài 6
- Trắc nghiệm Toán 9 Chương 2 Bài 7
- Trắc nghiệm ôn tập Chương 2 Toán 9
Đề kiểm tra Hình học 9 Chương 2
Đề kiểm tra trắc nghiệm online Chương 2 Hình học 9 (Thi Online)
Phần này các em được làm trắc nghiệm online trong thời gian quy định để kiểm tra năng lực và sau đó đối chiếu kết quả và xem đáp án chi tiết từng câu hỏi.
(đang cập nhật)
Đề kiểm tra Chương 2 Hình học 9 (Tải File)
Phần này các em có thể xem online hoặc tải file đề thi về tham khảo gồm đầy đủ câu hỏi và đáp án làm bài.
(đang cập nhật)
Lý thuyết từng bài chương 2 và hướng dẫn giải bài tập SGK
Lý thuyết các bài học Hình học 9 Chương 2
- Hình học 9 Bài 1: Sự xác định của đường tròn và tính chất đối xứng của đường tròn
- Hình học 9 Bài 2: Đường kính và dây của đường tròn
- Hình học 9 Bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây
- Hình học 9 Bài 4: Vị trí tương đối của đường thẳng và đường tròn
- Hình học 9 Bài 5: Dấu hiệu nhận biết tiếp tuyến của đường tròn
- Hình học 9 Bài 6: Tính chất của hai tiếp tuyến cắt nhau
- Hình học 9 Bài 7: Vị trí tương đối của hai đường tròn
Hướng dẫn giải bài tập SGK Hình học 9 Chương 2
- Giải bài tập Toán 9 Chương 2 Bài 1
- Giải bài tập Toán 9 Chương 2 Bài 2
- Giải bài tập Toán 9 Chương 2 Bài 3
- Giải bài tập Toán 9 Chương 2 Bài 4
- Giải bài tập Toán 9 Chương 2 Bài 5
- Giải bài tập Toán 9 Chương 2 Bài 6
- Giải bài tập Toán 9 Chương 2 Bài 7
Trên đây là phần nội dung Ôn tập Hình học 9 Chương 2 Đường tròn. Hy vọng với tài liệu này, các em sẽ ôn tập tốt và củng cố kiến thức một cách logic. Để thi online và tải file về máy các em vui lòng đăng nhập vào trang hoc247.net và ấn chọn chức năng "Thi Online" hoặc "Tải về". Ngoài ra, các em còn có thể chia sẻ lên Facebook để giới thiệu bạn bè cùng vào học, tích lũy thêm điểm HP và có cơ hội nhận thêm nhiều phần quà có giá trị từ HỌC247 !